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Motivation

1. Complex visual reasoning scenarios require compositional multi-step
processing and higher-level reasoning capabilities beyond immediate
perception and knowledge of the world.

Are both the ball to the right of other balls What is the color of small object in front of
and the black helmet made of plastic? green object with the max occurring shape?

Examples of compositional multi-step reasoning tasks on images (GQA and CLEVR-Humans)



Motivation

1. Complex visual reasoning scenarios require compositional multi-step
processing and higher-level reasoning capabilities beyond immediate
perception and knowledge of the world.

Did they put down the camera before or after the longest occurring action?

Example of compositional spatiotemporal and situational reasoning (AGQA and STAR)



Motivation

- These tasks are less reliant on world knowledge, and may not be sufficiently
addressed through scaling pretraining of models alone.
- Architectural refinements may also be needed.



Motivation

- These tasks are less reliant on world knowledge, and may not be sufficiently
addressed through scaling pretraining of models alone.

- Architectural refinements may also be needed.

- Hence, we focus on designing a new neural reasoning architecture that
combines iterative and parallel computational priors to support complex
reasoning capabilities.



lterative and Parallel Computation

What is the color of small object in front of green
object with the max occurring shape?

2

Steps: i) “count shapes” -> ij) “compute max shape’
-> jii) find green object with target shape ..
-> vij) get color of small object

lterative computation:

1.  Enables breaking down a problem into
appropriate sub tasks.

2. Reason in a step-by-step manner by
utilizing memory (similar to in RNNSs) to
store and compose results.




lterative and Parallel Computation

What is the color of small object in front of green
object with the max occurring shape?

lterative computation (similar to in RNNSs):

Limitations:

- Always performs operations sequentially and
can attend to a limited view at each time.

- Hence, independent operations that can be
computed simultaneously are still computed
sequentially (e.g. counting diff shapes in
above example).




lterative and Parallel Computation

What is the color of small object in front of green
object with the max occurring shape?

Sub-steps for counting ‘shapes’ to compute max shape:
i) Cubes -> ii) Cylinders -> iii) Spheres
(= 3 sequential time steps without forgetting prev. counts)

[terative computation (similar to in RNNSs):

Limitations:

- Independent operations that can be computed
simultaneously are still computed sequentially.

- Computation and memory retention demand
grows with number of operations (e.g.
counting shapes scales with num of shapes in
scene).




lterative and Parallel Computation

What is the color of small object in front of green
object with the max occurring shape?

Instead of iteratively, count shapes parallely:
i) Cubes x 3
i) Cylinders x 2 (= 1sequential time step and counts

jii) Spheres x 4 maintained separately)

Parallel computation (similar to in Transformers):

1. Reason simultaneously over independent
operations and different reasoning paths.

2. Allows parallelly processing multiple
operations or stimuli (e.g. co-occurring
events in videos) in a more efficient and
robust manner.




lterative and Parallel Computation

What is the color of small object in front of green
object with the max occurring shape?

Parallel computation (similar to in Transformers):

Limitations:

- Does not explicitly model compositional
computation to store and compose results
in a step-by-step manner.

- (e.g. max shape -> green obj -> in front of)




lterative and Parallel Computation

lterative computation (similar to in RNNSs):

1.  Enables breaking down a problem into
appropriate sub tasks.

2. Reason in a step-by-step manner by
utilizing memory to store and compose
results.

What is the color of small object in front of green
object with the max occurring shape?

Parallel computation (similar to in Transformers):

1. Reason simultaneously over independent
operations and different reasoning paths.

2. Allows parallelly processing multiple
operations or stimuli (e.g. co-occurring
events in videos) in a more efficient and
robust manner.



lterative and Parallel Reasoning Mechanism (IPRM)

Given vision input (X, ) and language input (X ), IPRM maintains an internal working
memory (M)) and performs the following computations for T iterations and N

parallel operations.
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IPRM computation flow (detailed in next slides)



lterative and Parallel Reasoning Mechanism (IPRM)
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For T iterations, do:

1) Operation Formation: Form ‘N’ parallel operations by attending to language

input (X, ) conditioned on previous operations Mop , inworking memory.

b



lterative and Parallel Reasoning Mechanism (IPRM)
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For T iterations, do:

2) Operation Execution: Execute the parallel operations by attending to visual

input (X ) conditioned on the formed operations (Z_ ) and previous results

op
Mres,t_1 in working memory.



lterative and Parallel Reasoning Mechanism (IPRM)
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For T iterations, do:

3) Operation Composition: Update the working memory by composing the new
parallel operations and results with one-another and integrating with the
previous working memory state M__.



lterative and Parallel Reasoning Mechanism (IPRM)

a

Memory state (M;)
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f Vis. input (Xy)

Qperation Formatioy

B HE-NN CE-EE] ‘B
r R L R
M. M I:I KV, 4‘ Ky = Fpoi(Xv; D M., M
2 et Mopl r ZOP]- [Zop Mres]) ZreSI 2 rest
I___’_D . : Operat_iqn
B ] [ ] [ ] | il
L MopN Mres]YJ MopN ZopN ZresN - MDPN M"ESIYJ

\Operation Executioy

repeat for £ < h

Next Mem. state (Mﬂ_y

For T iterations, do:

1) Operation Formation: Form ‘N’ parallel operations by attending to language input (X) conditioned on previous
operations Mop,t_1 in working memory.

2) Operation Execution: Execute the parallel operations by attending to visual input (X ) conditioned on the formed
operations (Z ) and previous results Mres’t_1 in working memory.

3) Operation Composition: Update the working memory by composing the new parallel operations and results with
one-another and integrating with the previous working memory state M, .



Experiments

Video reasoning benchmarks

- STAR (Situational Reasoning)
- AGQAV2 (Compositional spatio-temporal reasoning)
-  CLEVRER-Humans (Causal reasoning)

Image reasoning benchmarks

- GQA (Compositional reasoning on real-world images)

-  CLEVR-Humans (Compositional reasoning generalization to unseen language
forms and novel reasoning skills)

- CLEVR-CoGenT (Compositional reasoning generalization on novel attribute
compositions)



https://bobbywu.com/STAR/
https://cs.stanford.edu/people/ranjaykrishna/agqa/
https://sites.google.com/stanford.edu/clevrer-humans
https://cs.stanford.edu/people/dorarad/gqa/about.html
https://web.eecs.umich.edu/~justincj/iep/
https://cs.stanford.edu/people/jcjohns/clevr/

Experiments

. . STAR: What did the person do with the bottle?
Vldeo reasoni ng benCh ma rks AGQA: Did they put down the camera before or after the longest

occurring action?

Model Int. Seq. Pred. Feas. Avg.

LRR*[S] 737 710 713 65.1 703 Metric HCRN[39] AIO[72] Temp|7] MIST[I8] GF IPRM
LRR (w/o surrogate) | 54.5 487 443 455 482 obj-rel 403 483 50.2 51.7 55.0 57.8
All-in-One [72] 475 50.8 477 440 475 superlative 33.6 37.5 39.8 42.1 44.6 48.0
Temp[ATP](7] 50.6 528 493 40.6 483 sequencing 49.7 49.6 48.3 67.2 53.2 75.6
MIST [[18] 555 542 542 444 511 exist 50.0 50.8 51.8 60.3 59.1 62.4
InternVideo (8) [75] | 62.7 65.6 549 519 587 duration 43.8 454 49.6 54.6 52.8 50.7
SeViLA-BLIP2 63.7 704 63.1 624 649 act. recog. 55 19.0 19.0 19.7 14.2 20.0
Concat-Att-4L 68.1 714 666 552 653 open 36.3 - - 50.6 56.1 58.6
Cross-Att-4L 67.5 721 644 585 656 binary 48.0 = - 58.3 542 | 623
IPRM 71.8 777 71.0 591 69.9 all 42.1 48.6 49.8 54.4 55.1 60.4

STAR AGQA

- Improves state-of-art by close to 5% on both STAR and AGQA and outperforms
transformer-based vision-language attention modules and models such as BLIP2.

- Particularly beneficial for “Prediction” (+7% on STAR) and “Sequencing” question
types (+5% on STAR and +8% on AGQA).



lterative and parallel computation for visual reasoning

CLEVRER-Humans:
Table 2: Comparison of methods for CLEVRER-

Humans [S1] (Opt. is per option acc. and Qs. is - Increases state-of-art across
per question acc.). IPRM achieves state-of-art zero-shot, fine-tuned and

across settings. . .
trained from scratch settings.

Model Zero-shot Finetune Scratch
Opt. Qs. Opt. Qs. Opt. Q:s.

NS-DR|84] 51.0 32.0 - - - -

VRDPJ13] 509 316 . -

CNNLSTM[31] | 50.3 30.0 | 51.7 342 51.5 308
CNNBERT[31] 529 320 | 52.0 302 | 50.1 30.4
ALOE[12] 540 269 51.8 317 52.7 321
IPRM 617 389 | 741 53.0 | 62.0 383

Is collision b/w cyan and gray cylinder
responsible for collision b/w gray cylinder and
cyan cube?



Experiments

Image reasoning benchmarks

Modal e CLV-Hum CLV-CoGen | CLOSURE
ode XASUPY- 78 Fr | ValA ValB | ZS Avg.
PG+EE [35] Programs 540 66.6 | 966  73.7 75.6
NS-VQA |85] Programs - 67.8 99.8 63.9 71.2
FiLM None 56.6 759 | 983 78.8 56.9
MAC 28] None 574 815 | 990 783 73.8 What is the color of the small
MDETR [36] Bound. Box 599  81.7 99.8 76.7 - object in front of green object
IPRM None 63.8 85.5 99.1 80.3 75.6 with the max Occurring shape?

- Improves state-of-art on CLEVR-Humans and CLEVR-CoGenT without
requiring extra supervision.

- Achieves strong zero-shot performances suggesting better
generalizability of reasoning skills.



Experiments

Data efficient learning and better zero-shot generalization

5.5
IRz = e 1 - More data-efficient learning
= 80 1
g |1 and better zero-shot
37511 .
gé’m_ Ty TV —— performances than prior
S —»— Concat-Att (12.6M) -0Of-
5 A i N e state-of-art (MDETR) and
s W [MDITR (17,38 transformer-based modules.
60 __." m MAC (5.8M) . .
0001102 03 04 05 0.6 0.7 08 0.9 10 - IPRM when trained with only
SRR 50% data exceeds prior state
Figure 5: IPRM performance on of art (MDETR) and also

CLEVR-Humans at different training

. requires lesser parameters.
data ratios of Cross- and Concat-Att. 9 P



Experiments

Image reasoning benchmarks Are both the ball to the right of other balls

and the black helmet made of plastic?

Table 4: Performance comparison on GQA with imageQA methods and large-scale models that do
not utilize ground-truth scene graphs. * indicates large-scale pretrained VL model. **Utilizes ground
truth scene graphs, programs and bounding boxes for auxiliary training.

LCGN [25] MCAN[87] LXMERT*[66] 12-in-1*[49] OSCAR*[46] CFR** IPRM
GQA 55.8 57.4 60.0 60.0 61.6 72.1 60.3

- Achieves highest performance on GQA amongst imageQA methods (that are
trained only on GQA without additional supervision or pretraining).

- Performs competitively with larger-scale pretrained vision-language models.

- Achieves 87.2% when trained with ground truth bounding boxes and attributes,
suggesting further benefits possible through stronger visual backbones.



Experiments
Performs strongly at longer program lengths (proxy for reasoning steps)
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Figure 4: Acc. of IPRM (blue) across program lengths
for CLEVR (left) and STAR (right). IPRM has signi-
cantly higher accs. at longer program lengths.



Experiments

Further results on CLIP backbones

Table 8: Left: Comparison of IPRM with prominent vision-language attention mechanisms with

CLIP VIT-L/14 backbones on CLEVR-Humans, GQA and NLVRv2 benchmarks (‘4L’ indicates 4 att - Addi ng IPRM is more
layers; ‘x’ indicates model did not converge). Right: Results with other CLIP variants VIT-B and ) )
VIT-L@ 336 on GQA and NLVRV2. effective than adding
Model (CLIP | GQA | NLVRZ further transformer-based
VIT-B/16 bbone) TestD Test
Model (CLIP GQA | NLVR2 CLV-H ekl .
VITL/14bbone) | *r2am | +OFLOPS | pomy | mew 7S FT Wt-Proj-Fusion SL4 59.9 attention blocks.
Wt-Proj-Fusion 0.6M 0.1 535 608 | 585 744 ngSS'IAEH g‘ég ggg
Cross-Att (2L) 9.2M 1.5 55.1 62.1 = - OnCdL : : _ i
Concat-Att (2L) 72M 4.4 55.3 60.5 s 2 IPRM 559 60.8 Req uires lesser
Cross-Att (4L) 17.6M 3.1 57.4 54.4 60.3  80.0 Model (CLIP GOA NLVR2
Concat-Att (4L) | 13.6M 8.9 58.7 559 | 612 811 VIOT_E,E 4@336) Te?tD Test parameters an d
Cross-Att (6L) 26.0M 45 56.8 x 60.8  80.4 Wt-Proj-Fusion ) N
Concat-Att (6L) | 19.7M 83 57.4 X 62.0 8138 Cross-Att 574 53.4 compara ble FLOPs.
TPRM 52M 5.9 59.2 65.1 643 846 e 573 501
IPRM 59.0 65.3




Interpretability and Visualization of Intermediate Steps

How many objects are
exact same shape as the
one on the farthest right?
(GT: two; Pred: two)

tions

arallel Opera

What shape is behind
the large cylinder with

Parallel Operations

max occuring color?
(GT: cylinder;
Pred: cylinder)

Reasoning Computation Steps

ere
e

SFFESS SRS FIFSS SESLSS

0p cumi: T:0 0p_cum; T: 1 0p_cum: T: 6 0p_cum: T:7

" i Do either of 2°pairs of items
: that match each other in
terms of material and color
also match each other in

size? (GT: Yes; Pred: No)

Parallel Operations

Are there any red
kites or flags?
(GT: yes; Pred: yes)

Reasoning Computation Steps

Figure 7: Condensed reasoning visualization of IPRM. In the top two examples, IPRM correctly
utilizes both parallel and iterative computation to arrive at the correct answer. The bottom left example
shows IPRM’s cumulative lang. and visual attentions when solving a real-world GQA example. The
bottom right example, shows an error case where IPRM seems to misunderstand question and outputs
wrong ans. with less relevant attentions. See appendix for further reasoning visualizations and error



Model Ablations
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Figure 6: IPRM Model ablations in order: (i) Impact of number of parallel operations (N,,) vs

computation steps (7). (ii) Impact of Operation Composition Block (OPC). (iii): Impact of reduction
ratio () and (iv) memory window length (W).



Conclusion

1. Introduced a new neural reasoning architecture (IPRM) to better support
complex visual reasoning capabilities.

2. Can be conveniently integrated with conventional transformer and
non-transformer based vision and language backbones

3. Outperforms transformer-based modules while being more parameter efficient,
having comparable FLOPs and retaining parallelizability benefits.

4. While currently studied in context of visual reasoning, future work can look into

application of IPRM for language and embodied reasoning tasks as well.
a. X =reasoning task (e.g. a question, a task specification prompt, etc.)
b. X, = reasoning stimuli (e.g. embodied scene, language document, etc)



