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Rigorous Empirical Evaluation Forms the Basis of
Engineering Progress
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= Ground truth labels are costly

Problem : Efficiently evaluate model y(-) on Py while acquiring minimal number of labels



MDP for Adaptive Labeling

> Y = f*(X) + Noise , f*— Unknown
» Bayesian framework : Prior u over f

» Sequentially acquire data in batches (and update the beliefs over f)

States — Posterior beliefs over f thatis u, = u(- |D%Y)

Actions — Batch X selected to be labeled in time period t — MDP

Reward/Cost — Minimize Variance of MSE of model at end of horizon T
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MDP for Adaptive Labeling — three critical components
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= Posteriors through Uncertainty Quantification — GPs, Deep Learning based methods (Ensemble)
= Actions sampled using policy mg — parametrized through K-subset sampling

= Reward evaluation — E[VarfNHT(g(f))] where g(f) = MSE of model Y(.) under f and Py



At time step t (Overall repeat T times)

Solving the MDP
A
» Employ one-step lookaheads

» Policy gradients through PATHWISE gradients Update UQ module
rather than high-variance REINFORCE Y from p, to .,y
p
» Smoothed pipeline to enable PATHWISE Select batch X,,
gradients using 7, and get
true labels Y, 4
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Our algorithm outperforms other baselines
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= Similar results for real datasets and deep learning based uncertainty quantification methodologies
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