
Skinned Motion Retargeting with Dense
Geometric Interaction Perception

Zijie Ye1, Jia-Wei Liu2, Jia Jia1, Shikun Sun1, Mike Zheng Shou2

1Tsinghua University, 2National University of Singapore

Problem Statement

• Motion Retargeting: Mapping the motion of source character A to target character B
• Potential Issue: Contact Mismatch, Interpenetration
• Goal: Maintaining key characteristics by preserving contact & reducing interpenetration

Source Interpenetration Contact Mismatch

SAN (TOG 2020), Kfir Aberman et al.

Desirable Result

Source Character Target Character

Motivation
• Previous Methods

• Skeletal motion retargeting
• NKN (CVPR 2018), Villegas et al.
• PMnet (BMVC 2019), Lim et al.
• SAN (TOG 2020), Aberman et al.

• Geometry-aware motion retargeting
• Contact-aware (CVPR 2021), Villegas et al.
• R2ET (CVPR 2023), Zhang et al.
• SMTNet (CVPR 2024), Zhang et al.

• Our Goal
• Instead of correcting skeletal retargeting results, we model dense

interactions between body geometries directly.

Challenges & Solutions
• Challenge: Lack of dense mesh correspondence
• Solution: Semantically consistent sensors (SCS)

• Inspired by the medial axis inverse transform
• Automatically derive dense mesh correspondence from sparse

skeleton correspondence
• Each virtual sensor is described by a semantic coordinate (𝑏, 𝑙, 𝜙)

Joints (by !)

! "

Sensor Tangent
Space

Bone Matrix

Figure 3: Left: Illustration of the method to derive a sensor feature s from the semantic coordinate
(b, l,�) across different characters. The red line represents the projected ray. The feature s encom-
passes the sensor’s location and its tangent space matrix. Right: The DMI field effectively captures
both contact and non-contact interactions. Red lines represent dt,i,j in the DMI field. In the second
example, the body sensors (yellow points) are located in the tangent plane of the hand sensors (blue
points), signifying a contact interaction.

if its ray intersects the mesh linked to the bone; otherwise, it is considered invalid. Through this157

method, we establish a dense geometric correspondence based on sparse skeletal correspondence. The158

procedure for deriving SCS is illustrated in Figure 3. Given a unified set of SCS semantic coordinates159

{(b1, l1,�1), (b2, l2,�2), · · · , (bK , lK ,�K)}, we can derive SCS feature S = {s1, s2, · · · , sK} for160

each character. Further details can be found in Algorithm 1.161

3.3 Dense mesh interaction field162

To effectively represent the interactions between character limbs and the torso, we have developed163

the DMI field. Based on SCS detailed in Section 3.2, the DMI field comprehensively captures both164

contact and non-contact interactions across different body part geometries. Utilizing the DMI field165

allows for dense geometry interaction-aware motion retargeting, thereby eliminating the need for a166

geometry correction stage.167

Sensor forward kinematics For a given motion sequence, denoted as m, we initially conduct168

forward kinematics (FK) on S to derive sensor features S1:T 2 RT⇥S⇥4⇥3. Each St encompasses169

the locations and tangent matrices for S sensors at frame t. The FK transformation for an individual170

sensor is expressed as:171

sti =
NX

n=1

!(pi)nGn(Q
t) · si, (2)

where Gn(Qt) 2 SE(3) is the global transformation matrix for bone n, derived from its local rotation172

matrix, and !(pi)n represents the linear blend skinning (LBS) weight for sensor si, determined173

through barycentric interpolation of its adjacent mesh vertices.174

Pairwise interaction feature Next, we model the geometric interactions as pairwise interaction175

features between sensors. Ideally, for each frame, we obtain a comprehensive DMI field, Dt
,176

representing pairwise vectors across K2 sensor pairs:177

dt,i,j = t�1
i (pt

j � pt
i), (3)

178

Dt
= {(dt,i,j , bi, bj , li, lj ,�i,�j)}j=1:S

i=1:S , (4)
where ti 2 R3⇥3 is the tangent matrix if sensor i, and dt,i,j represents the relative position of target179

sensor j in the tangent space of observation sensor i. Dt
is composed of two components: the relative180

position of the sensor pair and the semantic coordinates of both the observation and target sensors.181

The use of semantic rather than spatial coordinates is essential, as it obviates the need for actual182

sensor positions, thereby making DMI suitable for motion retargeting applications.183

However, Dt 2 RS⇥S⇥P exhibits quadratic growth with respect to S because it includes S2 sensor184

pairs, rendering it impractical when managing thousands of sensors. To address this, we implement185

5

in the source action was less than the arm’s diameter dsrc. We then located the same sensor pairs in450

the retargeted motion. If the distance between these sensor pairs in the retargeted motion exceeded451

that in the source action, we calculated the MSE of the distance differences; otherwise, the contact452

error was zero. The formula is as follows:453

Contact Error =

(
(||dt,k,l

A ||2 � ||d̂t,k,l
B ||2)2, if||dt,k,l

A ||2 > ||d̂t,k,l
B ||2

0, otherwise,
(11)

where dt,k,l
A indicates the contact sensor pairs with ||dt,k,l

A ||2 < dsrc.454

For geometric interpenetration, we assess the percentage of interpenetration, calculated as the ratio of455

penetrated vertices to the total vertices per frame. A lower ratio signifies reduced interpenetration. In456

our evaluation, we calculate the interpenetration ratio between arms (including hands) and the body.457

Penetration =
Number of penetrated arm vertices

Total number of arm vertices
. (12)

C Implementation Details458

SCS details As introduced in Section 3.2, we establish semantic correspondences between character459

meshes with different topologies using semantically consistent sensors. Specifically, given the460

semantic coordinates (b, l, �) of a sensor, we can identify semantically consistent sensor positions on461

the meshes of different roles and obtain the feature vectors of the sensors. This process is detailed in462

Algorithm 1.463

Algorithm 1: Derive Semantically Consistent Sensors from Semantic Coordinate
Input: Mesh O, joint locations J 2 RN⇥3, bone index b 2 {0, 1, · · · , N}, origin parameter

l 2 [0, 1), direction parameter � 2 [0, 2⇡)
Output: Sensor feature s 2 R4⇥3

iparent bone_parent_joint(b), ichild bone_child_joint(b);
xparent J[iparent], xchild J[ichild];
o (1� l)xparent + lxchild ; /* Ray origin */
dforward forward_direction(O) ; /* Face forward direction */
dbone normalize(xchild � xparent) ; /* Bone unit direction vector */
dother dforward ⇥ dbone;
n cos(�)dforward + sin(�)dother ; /* Ray direction */
B bone_mesh(O, b) ; /* Bone associated mesh */
r ray(o,n);
p ray_mesh_intersection(B, r);
if p 6= ; then

t tangent_matrix(xp,B);
s concat(p, t);

else
s 0;

end

Network architecture The network architectures of both our DMI Encoder and Geometry Encoder464

resemble the structure of PointNet. However, since all our data is inherently situated within the465

canonical space, we have eliminated the T-Net from PointNet to reduce network complexity. Before466

being input into the encoder, sensor features pass through a sensor group embedding layer, which467

converts the bone index b into an 8-dimensional embedding vector. This embedding vector is updated468

during training. The Geometry Encoder consists of six PointNet layers with Dmodel set at 256,469

and there is a distinct Geometry Encoder for the body, head, arms, and legs. The DMI Encoder470

comprises a per-sensor encoder and a per-frame encoder, each built with six PointNet layers, with471

each interaction pair having its own encoder. Specific interaction pairs include: [(Left Arm), (Right472

Arm, Head, Torso)], [(Right Arm), (Left Arm, Head, Torso)], [(Left Leg), (Right Leg, Torso)], and473

[(Right Leg), (Left Leg, Torso)]. The Motion Encoder is a multilayer perceptron (MLP). Both the474

Transformer Encoder and Transformer Decoder have eight layers, with the number of heads set to475

13

Challenges & Solutions
• Challenge: Model dense mesh interaction between body parts
• Solution: Dense mesh interaction (DMI) field

• Relative sensor positions in sensor tangent space
• Semantic coordinates instead of spatial coordinates
• Captures contact & non-contact semantics

Joints (by !)

! "

Sensor Tangent
Space

Bone Matrix

Figure 3: Left: Illustration of the method to derive a sensor feature s from the semantic coordinate
(b, l,�) across different characters. The red line represents the projected ray. The feature s encom-
passes the sensor’s location and its tangent space matrix. Right: The DMI field effectively captures
both contact and non-contact interactions. Red lines represent dt,i,j in the DMI field. In the second
example, the body sensors (yellow points) are located in the tangent plane of the hand sensors (blue
points), signifying a contact interaction.

if its ray intersects the mesh linked to the bone; otherwise, it is considered invalid. Through this157

method, we establish a dense geometric correspondence based on sparse skeletal correspondence. The158

procedure for deriving SCS is illustrated in Figure 3. Given a unified set of SCS semantic coordinates159

{(b1, l1,�1), (b2, l2,�2), · · · , (bK , lK ,�K)}, we can derive SCS feature S = {s1, s2, · · · , sK} for160

each character. Further details can be found in Algorithm 1.161

3.3 Dense mesh interaction field162

To effectively represent the interactions between character limbs and the torso, we have developed163

the DMI field. Based on SCS detailed in Section 3.2, the DMI field comprehensively captures both164

contact and non-contact interactions across different body part geometries. Utilizing the DMI field165

allows for dense geometry interaction-aware motion retargeting, thereby eliminating the need for a166

geometry correction stage.167

Sensor forward kinematics For a given motion sequence, denoted as m, we initially conduct168

forward kinematics (FK) on S to derive sensor features S1:T 2 RT⇥S⇥4⇥3. Each St encompasses169

the locations and tangent matrices for S sensors at frame t. The FK transformation for an individual170

sensor is expressed as:171

sti =
NX

n=1

!(pi)nGn(Q
t) · si, (2)

where Gn(Qt) 2 SE(3) is the global transformation matrix for bone n, derived from its local rotation172

matrix, and !(pi)n represents the linear blend skinning (LBS) weight for sensor si, determined173

through barycentric interpolation of its adjacent mesh vertices.174

Pairwise interaction feature Next, we model the geometric interactions as pairwise interaction175

features between sensors. Ideally, for each frame, we obtain a comprehensive DMI field, Dt
,176

representing pairwise vectors across K2 sensor pairs:177

dt,i,j = t�1
i (pt

j � pt
i), (3)

178

Dt
= {(dt,i,j , bi, bj , li, lj ,�i,�j)}j=1:S

i=1:S , (4)
where ti 2 R3⇥3 is the tangent matrix if sensor i, and dt,i,j represents the relative position of target179

sensor j in the tangent space of observation sensor i. Dt
is composed of two components: the relative180

position of the sensor pair and the semantic coordinates of both the observation and target sensors.181

The use of semantic rather than spatial coordinates is essential, as it obviates the need for actual182

sensor positions, thereby making DMI suitable for motion retargeting applications.183

However, Dt 2 RS⇥S⇥P exhibits quadratic growth with respect to S because it includes S2 sensor184

pairs, rendering it impractical when managing thousands of sensors. To address this, we implement185

5

ContactNon-Contact

Pipeline

• Key designs
• SCS for dense mesh correspondence
• DMI field to model complex geometric interactions
• Sparsify '𝐃 ∈ O(𝑆!) by sensor pair selection, 𝐃 = ℱ"('𝐃) ∈ O(𝑆)
• Align both skeletal semantics and geometric semantics in one single

stage

• DMI Consistency Loss

where ti 2 R3⇥3 is the tangent matrix if sensor i, and dt,i,j represents the relative position of target
sensor j in the tangent space of observation sensor i. Dt

is composed of two components: the relative
position of the sensor pair and the semantic coordinates of both the observation and target sensors.
The use of semantic rather than spatial coordinates is essential, as it obviates the need for actual
sensor positions, thereby making DMI suitable for motion retargeting applications.

However, Dt 2 RS⇥S⇥P exhibits quadratic growth with respect to S because it includes S2 sensor
pairs, rendering it impractical when managing thousands of sensors. To address this, we implement
two sparsification strategies for Dt

. Initially, we restrict interactions to critical body parts only, such
as arm-torso, arm-head, arm-arm, and leg-leg, rather than between all sensor pairs, thereby restricting
our focus to K observation sensors. Subsequently, for each observation sensor, we select L target
sensors from each relevant body part, where L is a predetermined hyper-parameter. Specifically, we
empirically choose L/2 nearest and L/2 furthest target sensors. We find that proximate sensor pairs
are crucial for minimizing interpenetration and maintaining contact, while distant pairs delineate the
overall spatial relationships between body parts, as shown in Figure 3. These strategies lead to the
formulation of the final DMI field D 2 RK⇥L⇥P , with selected sensor pairs indicated by the sparse
DMI mask Msrc 2 RS⇥S shown in Figure 2.

3.4 Geometry interaction-aware motion retargeting

To avoid the conflict between skeleton interaction and geometric correction, the proposed MeshRet
employs the DMI field to model geometric interactions directly. As shown in Figure 2, MeshRet
initially extracts the DMI field DA from the source motion sequence mA, as described in Section 3.3.
The field DA encapsulates interactions among various body parts within the source motion, encom-
passing both contact and non-contact interactions, further depicted in Figure 3. The DMI field,
composed of sensor pair feature vectors, possesses the unordered characteristics of a point cloud.
Consequently, we implement a PointNet-like architecture [24] for our DMI encoder, which is divided
into two components: the per-sensor encoder and the per-frame encoder. Given DA 2 RT⇥K⇥L⇥P ,
the per-sensor encoder initially processes it as T ⇤K separate point clouds, producing representations
Hs

A 2 RT⇥K⇥Dmodel for each observation sensor, where Dmodel denotes the feature dimension. Sub-
sequently, the per-frame encoder generates per-frame representations Hf

A 2 RT⇥Dmodel by encoding
these T point clouds.

Since DMI field DA lacks geometric information about characters, we introduced a geometry
encoder Fg to extract geometric features from their SCS. For each sensor, we form a feature vector
by concatenating its rest-pose feature si with its semantic coordinates (bi, li,�i). The resultant
geometric features are represented as CA 2 RSA⇥C for character A and CB 2 RSB⇥C for character B.
The semantic coordinates of sensors act as intermediaries linking the DMI field to character geometry.
The geometry encoder employs a PointNet-like architecture [24] to transform the geometric features
C into a geometric latent code Hg 2 RDmodel .

The transformer-based retargeting network processes input features including the source DMI feature
Hf

A, source joint rotation QA, source geometry latent Hg
A, and target geometry latent Hg

B. Specifically,
the encoder processes Hf

A and Hg
B, while the decoder processes QA and Hg

A. The latents Hg
A and

Hg
B serve as the initial tokens in the sequence, enabling both the encoder and decoder to operate over

a sequence of length T + 1. The output sequence’s final T frames are represented as Q̂B.

Due to the lack of paired ground-truth data, we employ the unsupervised method described by Lim,
Chang, and Choi [15]. Our network utilizes four loss functions for training: reconstruction loss,
DMI consistency loss, adversarial loss, and end-effector loss. Supervision signals are derived from
the source motion. We maintain geometric interactions by aligning the source DMI field DA with
the target DMI field D̂B. The target DMI field D̂B is generated by first applying sensor forward
kinematics to Q̂B, followed by selecting sensor pairs using the target sparse DMI mask Mtgt 2 RS⇥S .
This mask, Mtgt, is derived by excluding invalid sensors of the target character from Msrc. The DMI
consistency loss is quantified as the cosine similarity loss between pair-wise relative positions in D̂B
and DA:

Ldmi = � 1

T

TX

t=1

KX

k=1

LX

l=1

c(k, l)
dt,k,l

A · d̂t,k,l
B

||dt,k,l
A ||2 · ||d̂t,k,l

B ||2
, (5)

6

where c(k, l) takes the value 1 if sensor pair (k, l) is valid in both Msrc and Mtgt, and 0 otherwise.
The reconstruction loss serves as a regularization mechanism to minimize motion alterations during
retargeting, defined as follows:

Lrec = ||Q̂B �QA||22. (6)
To facilitate realistic motion retargeting, a discriminator, denoted as �(·), is employed. The adversarial
loss is subsequently defined as:

Ladv = EQ⇠preal [log �(Q)] + EQ⇠p(Q̂B)
[log(1� �(Q))]. (7)

We observed that the global orientation of end-effectors significantly influences user experience.
Consequently, we introduced an end-effector loss to promote consistent orientations of end-effectors
in the retargeted motion.

Lef =
1

T |X |

TX

t=1

X

i2X
||R(Qt

A, i)�R(Q̂t
B, i)||, (8)

where R(·) transforms local joint rotations into global rotations for joint i along the kinematic chain
and X represents the set of end-effectors. Our MeshRet is trained by:

Ltotal = �recLrec + �dmiLdmi + �advLadv + �efLef. (9)

4 Experiments

4.1 Settings

Datasets We trained and evaluated our method using the Mixamo dataset [2] and the newly curated
ScanRet dataset. We downloaded 3,675 motion clips performed by 13 cartoon characters from the
Mixamo dataset contains, while the ScanRet dataset consists of 8,298 clips executed by 100 human
actors. Notably, the Mixamo dataset frequently features corrupted data due to interpenetration and
contact mismatches. To overcome these issues, we created the ScanRet dataset, which provides
detailed contact semantics and improved mesh interactions, with each clip being scrutinized by
human animators. The training set comprises 90% of the motion clips from both datasets, involving
nine characters from Mixamo and 90 from ScanRet. Our experiments tested the motion retargeting
capabilities between cartoon characters and real humans, aligning closely with typical retargeting
workflows. During inference, we adopted four data splits based on character and motion visibility:
unseen character with unseen motion (UC+UM), unseen character with seen motion (UC+SM),
seen character with unseen motion (SC+UM), and seen character with seen motion (SC+SM), as
delineated by Zhang et al. [32]. We present the average results across these splits. Additional details
available in Appendix A.

Implementation details The hyper-parameters �rec, �dmi, �adv, �ef, and L were empirically set
to 1.0, 5.0, 1.0, 1.0, and 20, respectively. We use {0, 1, · · · , Nbody � 1} ⇥ {0, 0.25, 0.5, 0.75} ⇥
{0, 0.5⇡,⇡, 1.5⇡} as the SCS semantic coordinates set, where Nbody = 18 is the number of body
bones and ⇥ represents the Cartesian product. We employed the Adam optimizer [13] with a learning
rate of 10�4 to optimize our network. The training process required 36 epochs. For further details,
please refer to Appendix C.

Evaluation metrics We assess the effectiveness of our method through three metrics: joint accuracy,
contact preservation, and geometric interpenetration. Joint accuracy is quantified by calculating the
Mean Squared Error (MSE) between the retargeted joint positions and the ground-truth data provided
by animators in ScanRet. This analysis considers both global and local joint positions, normalized by
the character heights. Contact preservation is evaluated by measuring the Contact Error, defined as
the mean squared distance between sensors that were originally in contact in the source motion clip.
Geometric interpenetration is determined by the ratio of penetrated limb vertices to the total limb
vertices per frame. Further details are available in Appendix B.

4.2 Comparison with state-of-the-arts

Qualitative results Figure 4 demonstrates the performance of skinned motion retargeting across
characters with diverse body shapes, where the motion sequences are novel to the target characters

7

• End-effector loss

Comparison

