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Motivating problem

Noisy training data

We want to capture the dynamic behavior of holomorphic operators using surrogate models based on

DNNss, i.e., to approximate
XeX—FX)ey

where ) is the PDE solutions space and X represents the data supplied to the PDE. Let u be a
probability measure on X'. Then the noisy training data is given by

{(Xi, F(Xi) + B}y
where Xi,..., Xm ~iia. 1 and E; is noise.

Keywords: uncertainty quantification, surrogate models, parametric PDEs, Deep Learning.
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Motivating problem

We focus on learning holomorphic operators.

The typical operator learning methodology

Consists of three objects: an approximate encoder Ex : X — R an approximate decoder
Dy : R® — Y and a DNN N : R%* — RY which approximates F as

F~F:=DyoNoéx.

The encoder and decoder are either specified by the problem, learned separately from data, or learned
concurrently with N. The goal, as in all supervised learning problems, is to ensure good generalization
via the learned operator F from as little training data m as possible.
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Theorem [BA, ND, SM (2024)] ( bounds)

Let 0 < p,e <1, m>3and e > 0. Then there is a class ' of hyperbolic tangent DNN depending on
m and e only such that the following holds. Provided a technical assumption holds, with high
probability, every approximate minimizer of the training problem above satisfies

HlF - ﬁ”'Li(){;]}) S, Eapp,2 aF EX,2 i Ey,2 = Eopt,2 “F Esamp,27

||F = ﬁHLﬁO(X;J/) 5 Eapp,oo - EX,oo aF Ey,oo a4 Eopt,oo A Esamp,oo:
where m = m/(log(m) + log (e_l)) and E,pt is the objective function error.

Here, for g € {2, 00}
m E.np g is an approximation error, which decays algebraically in the amount of training data m.

m Ex g, Ey g are encoding-decoding errors, which depend on the accuracy of the learned encoders
and decoders.

m Eqpe g is an optimization error, and Esamp,q is @ sampling error, which depends on the noise E;.
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Theoretical contributions

main theoretical contributions of this work are as follows
We consider operators taking values in general Banach spaces.

We consider standard feedforward DNN architectures (constant width, width exceeds depth) and
training procedures (£>-loss minimization).

We construct a family of DNNs such that any approximate minimizer of the corresponding
training problem satisfies a generalization bound that is explicit in the various error sources.

These DNN architectures are problem agnostic; they depend on m only. In particular, the
architectures are completely independent on the regularity assumptions of target operator.

We show that training problems based on any family of fully-connected DNNs possess
uncountably many minimizers that achieve the same generalization bounds.

We provide bounds in both the Li— and L;’-norms that hold in high probability, rather than just
expectation.

We show that the generalization bound is optimal with respect to m: no learning procedure (not
necessarily DL-based) can achieve better rates in m up to log terms.

S. Moraga Optimal DL between Banach spaces November 11, 2024 7/17



Computational setup
[ eJele]

Outline

Computational setup

S. Moraga Optimal DL between Banach spaces




Computational setup

[e] Jele)

Training data and design of experiments

We run several trials solving the problem

Given training data {(X;, Y;)}21 C (X x V)", Xi ~iia. g, Yi=F(X)+E €,
approximate F € Li()\.’;y).

We generate the measurements Y; using mixed variational formulations of the parametric elliptic
PDEs discretized using FEniCS with input data X;.

The noise E; € ) encompasses the discretization errors from numerical solution.

Each of our architectures is trained across a range of datasets with increasing sizes. This involves
using a set of training data consisting of values {(X;, Y;))}Z;, where
m € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}.

After training we calculate the testing error for each trial and run statistics across all trials for
each dataset.
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Choice of architectures and initialization

We fix the number of nodes per layer N and depth L such that the ratio 8 := L/N is 8 = 0.5. We
initialize the weights and biases using the HeUniform initializer from keras setting the seed to the trial
number. We consider the Rectified Linear Unit (ReLU)

o1(z) := max{0, z},

hyperbolic tangent (tanh)

e —e *

o2(z) == peanper

or Exponential Linear Unit (ELU)

activation functions in our experiments.
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Implementation

We use the open-source finite element library FEniCS, specifically version 2019.1.0, and Google's
TensorFlow version 2.12.0.

We train the DNN models in single precision on the Digital Research Alliance of Canada’s Cedar
compute cluster, using Intel Xenon Processor E5-2683 v4 CPUs with either 125GB or 250GB per node.
Results were stored locally on the cluster and the estimated total space used to store the data for
testing and training and results from computation is approximately 50 GB.

Experiments

For each experiment we consider training with 14 sets of points of size

m € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400,500} and for 6 different architectures (4 x 40
and 10 x 100 with ReLU, ELU, and tanh activations) over two parametric dimensions (d = 4 and

d = 8) and two coefficients giving 336 DNNs to be trained for each trial.
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Parametric Boussinesq problem

Given x € [—1,1]°, find the velocity u : [-1,1]? x Q — R?, pressure p : [-1,1]? x @ — R and
temperature ¢ : [-1,1]? x Q — R of a fluid such that

—div(2a(x)u((x))e(u(x))) + (u(x) - V)u(x) + Vp(x) = <P(X)g, in §Q,

div(u(x)) =0, inQ,

—div(K(x)Ve(x)) + u(x) - Vo(x) = in Q,
u = up, on 09,
© = @p, on 02,

/(x) 0.

x € [-1,1)7 = (u, p0)(x) € (LY(Q) x L(Q) x LY(Q))

We consider to approximate

of a fully-mixed variational formulation in Banach spaces.
Colmenares, Gatica, Moraga (2020).
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Parametric PDE approximation in Banach spaces

m Steady-state parametric Boussinesq equations with physical domain (0, 1)3 and d = 8.
m Comparison of testing error in L3([—1,1]%;L*(Q)), L2([~1,1]%; LY(Q)) and L3([-1,1]%; L*(R)) for
(u,¢,p).

LogKL coeff. Boussinesq u € L'(%2), d = 8 LogKL coeff. Boussinesq ¢ € L¥(Q), d = 8 LogKL coeff. Boussinesq p € L3(), d = 8

/Oo
//

(X;Y) error

4

=
©

5
=

[~=ELU 4 x 40 DNN
|~~ELU 10 x 100 DNN

[~=ELU 4 x 40 DNN
10 x 100 DNN

ReLU 4 x 40 DNN 4 x 40 DNN ]

~4=ReLU 10 x 100 DNN| 10 x 100 DNN| [~4=ReLU 10 x 100 DNN]

[=v-tanh 4 x 40 DNN [==tanh 4 x 40 DNN =v—tanh 4 x 40 DNN
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Conclusions

m We show sharp algebraic rates of convergence in m, confirming that certain classes of holomorphic
operators involving PDEs can be learned efficiently and without the curse of dimensionality.

m The sizes of the various DNNs in our theorems also do not succumb to the so-called curse of
parametric complexity, since the width and depth bounds are at most algebraic in m.

m We present a series of experiments demonstrating the efficacy of DL on challenging problems such
as the parametric diffusion, Navier-Stokes-Brinkman and Boussinesq PDEs, the latter two of
which involve operators whose codomains are Banach, as opposed to Hilbert, spaces.

S. Moraga Optimal DL between Banach spaces November 11, 2024 16 / 17



Conclusions
(e]e]

References

@ B. ADCOCK; S. BRUGIAPAGLIA; N.DEXTER; S. MORAGA, Near-optimal learning of Banach-valued, high-dimensional
functions via deep neural networks and deep learning. Neural Networks (in press), 2024

@ B. ADCOCK.; N.DEXTER.; S. MORAGA, Optimal approximation of infinite-dimensional holomorphic functions.
Calcolo, 61(1):12, 2024.

@ B. ADCOCK.; S. BRUGIAPAGLIA.; N.DEXTER.; S. MORAGA, Learning smooth functions in high dimensions: from

sparse polynomials to deep neural networks. In S. Mishra and A. Townsend, editors, Numerical Analysis Meets Machine
Learning, volume 25 of Handbook of Numerical Analysis, pages 1-52. Elsevier, 2024.

@ B. ADCOCK.; N.DEXTER.; S. MORAGA, Optimal approximation of infinite-dimensional holo- morphic functions II:
recovery from i.i.d. pointwise samples. arXiv:2310.16940, 2023.

@ B. ADCOCK.; S. BRUGIAPAGLIA.; N.DEXTER.; S. MORAGA, Deep Neural Networks Are Effective At Learning
High-Dimensional Hilbert-Valued Functions From Limited Data. MSML, volume 145, pages 1-36. (2021)

smoragas@sfu.ca
sites.google.com/view/sebanthalas

S. Moraga Optimal DL between Banach spaces November 11,




	Introduction 
	Computational setup
	Numerical results
	Conclusions

