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Similarity-Based
Learning Objective

for Distribution P = Pxy

Compares examples within mini-
batch to create "pseudo-labels”
for each example. &)
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Distribution P = Pxy

Motivation: This and other SSL
objectives include a (learnable)
procedure to incorporate known
marginal distributions of each
modality to better estimate P.
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Problem Setting

Data from unknown joint probability distribution.

(X17Y1)7 SRR (Xnayn) ~ P

Access to known marginal distributions.

(PXvPY)

Goal: estimate the parameter:

P(h) =Ex y)op [M(X,Y)]

and characterize how the marginals improve upon

P (h) = % En: h(X;,Y)



Problem Setting Data Balancing

Data from unknown joint probability distribution. Rescale rows and columns by the desired marginals.
1 n
0
(X1,Y1),...,(X,,Y,) ~ P PO =Py==% dx.v)

i=1

Access to known marginal distributions. (12)51) . quk—l) I odd
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Goal: estimate the parameter:

P(h) =Ex y)op [M(X,Y)]

and characterize how the marginals improve upon

P (h) = % En: h(X;,Y)
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Data Balancing

Rescale rows and columns by the desired marginals.
1 n
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1. How does the balanced distribution improve
upon the empirical measure theoretically?

2. What are the practical implications for SSL
objectives such as CLIP?



Problem Setting

Data from unknown joint probability distribution.
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Data Balancing

Rescale rows and columns by the desired marginals.
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Theorem. The iterates of balancing satisty

9 2 N 6 2 _ 22
p [P (h) = P(h)| = =E - O<k—> S

n3/2

Novel recursion formula for estimation error that is
of independent interest (OT, data-centric ML, etc.)



Problem Setting

Data from unknown joint probability distribution.

(X17Y1)7 SRR (X’qun) ~ P

Access to known marginal distributions.

(Px, Py)

Goal: estimate the parameter:

P(h) =

Lxy)~p [MX,Y)]

and characterize how the marginals improve upon

P (h)

1 n
= ; h(X;,Y;)

Balancing mini-batches to improve the
stability of the CLIP training objective.

MSCOCO (Image)

MSCOCO (Text)

Using a balanced objective increases zero-shot retrieval
(recall) across datasets and embedding architectures.
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Problem Setting

Data from unknown joint probability distribution.

(X17Y1)7 SR (Xnayn) ~ P

Access to known marginal distributions.
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Goal: estimate the parameter:

P(h) =
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and characterize how the marginals improve upon

P (h)
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CLIP models trained on the balanced
pre-training set improve over those
trained on the original.
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Balancing at scale improves performance on zero-shot classification.



Problem Setting

Data from unknown joint probability distribution.

(X17Y1)7 > 0 0 g (Xfern) ~ P

Access to known marginal distributions.

(Py, Py) Thank yOU!

Goal: estimate the parameter:

P(h) =Ex y)op [M(X,Y)]

and characterize how the marginals improve upon E

P (h) = % z": h(X;,Y:)



