The Benefits of Balance From Information Projections to Variance Reduction

NeurlPS 2024

Team

Lang Liu
University of
Washington

Ronak Mehta
University of
Washington

Zaid Harchaoui
University of
Washington

UNIVERSITY of WASHINGTON

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford * 1 Jong Wook Kim * 1 Chris Hallacy 1 Aditya Ramesh 1 Gabriel Goh 1 Sandhini Agarwal 1 Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 Ilva Sutskever 1

SELF-LABELLING VIA SIMULTANEOUS CL AND REPRESENTATION LEARNING

Yuki M. Asano

Christian Rupprecht

Andrea Vedaldi

Vigual Cometry Group

DEMYSTIFYING CLIP DATA

Hu Xu¹ Saining Xie² Xiaoqing Ellen Tan¹ Po-Yao Huang¹ Russell Howes¹ Vasu Sharma¹ Shang-Wen Li¹ Gargi Ghosh¹ Luke Zettlemoyer^{1,3} Christoph Feichtenhofer¹

¹FAIR, Meta AI

²New York University

ty ³University of Washington

ts.ox.ac.uk

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

Mathilde Caron^{1,2}

Ishan Misra²

 $Julien Mairal^1$

Priya Goyal²

Piotr Bojanowski²

Armand Joulin 2

¹ Inria*

² Facebook AI Research

DINOv2: Learning Robust Visual Features without Supervision

Maxime Oquab**, Timothée Darcet**, Théo Moutakanni**,

lec*, Vasil Khalidov*, Pierre Fernandez, Daniel Haziza, Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Iuang, Shang-Wen Li, Ishan Misra, Michael Rabbat, I Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal¹, tut*, Armand Joulin*, Piotr Bojanowski*

Meta AI Research

 1Inria

ore team **equal contribution

DATACOMP:

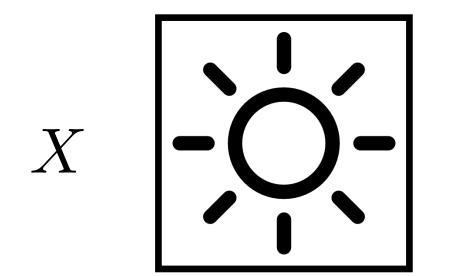
In search of the next generation of multimodal datasets

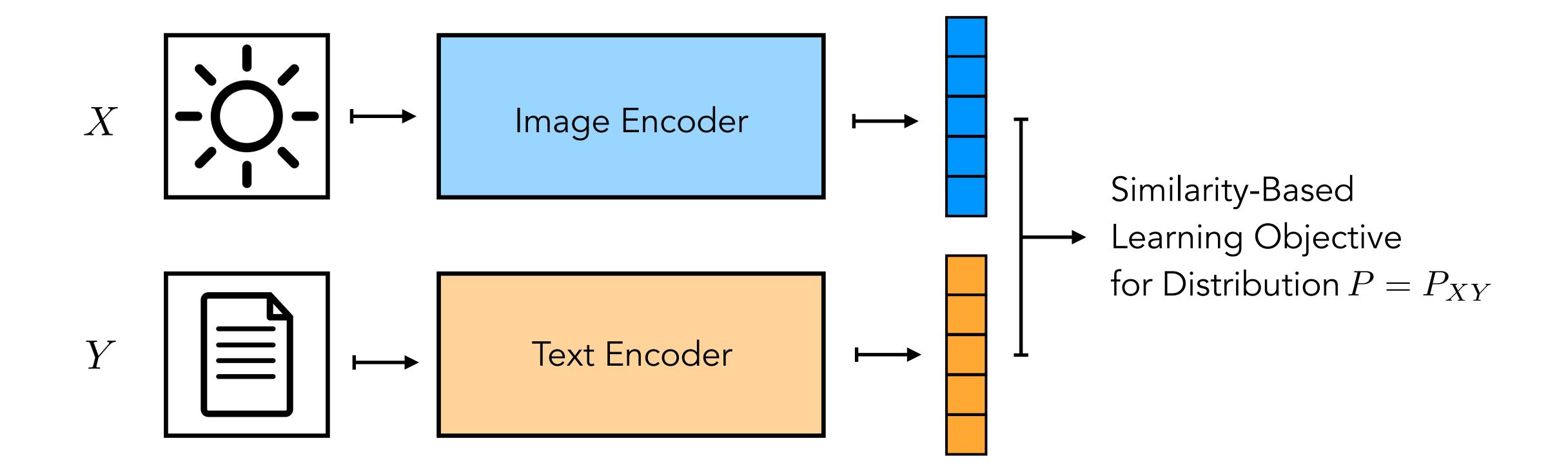
Discriminative clustering with representation learning with any ratio of labeled to unlabeled data

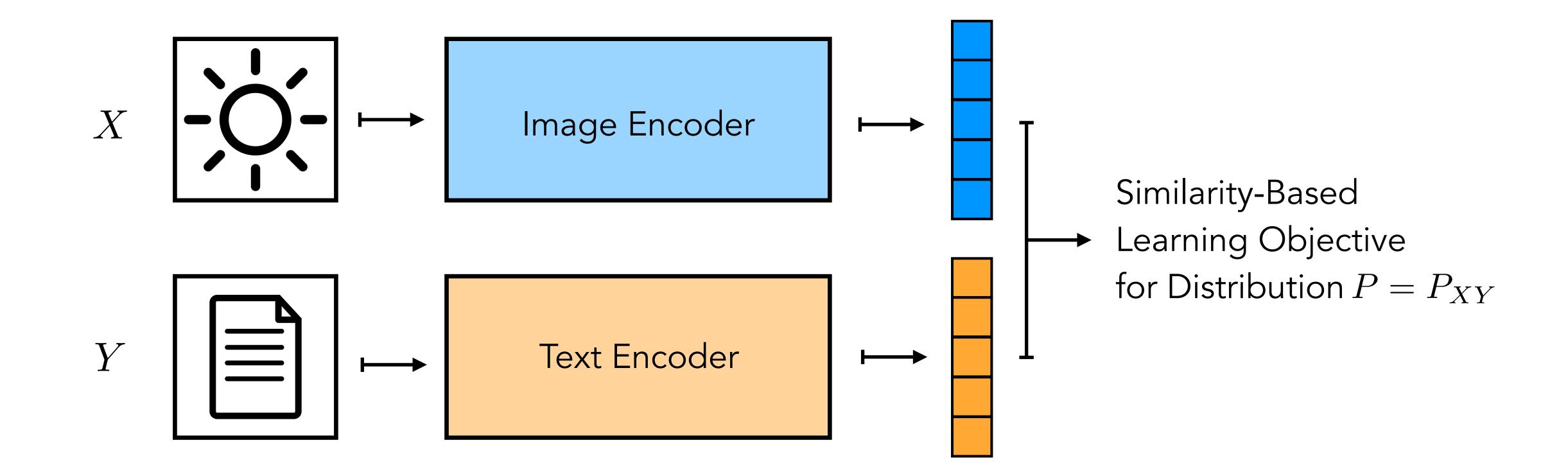
Corinne Jones 1 • Vincent Roulet 2 • Zaid Harchaoui 2 •

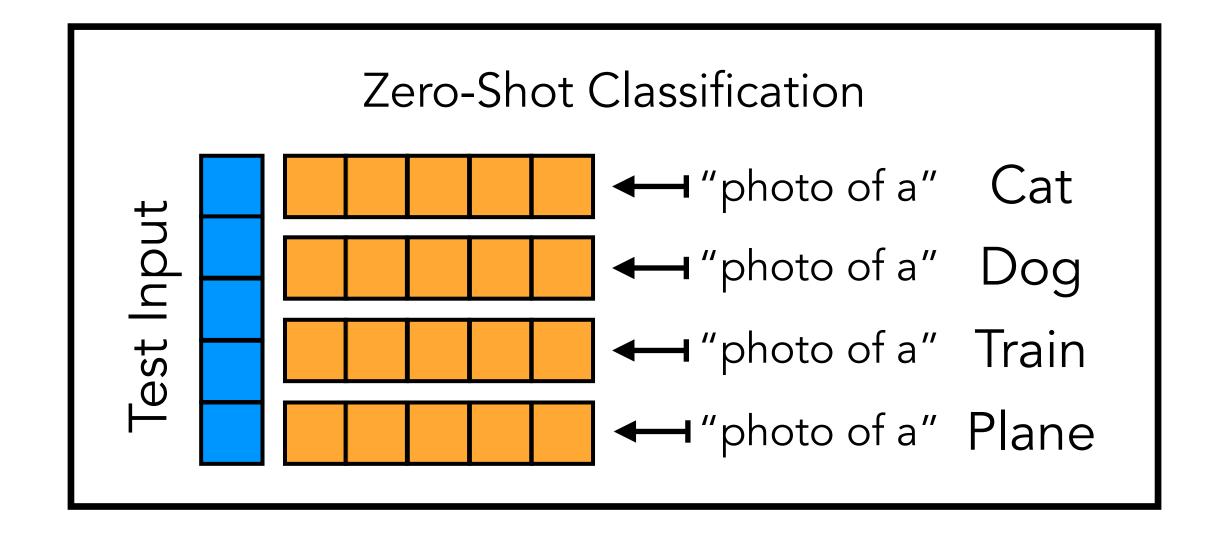
adre*2, Gabriel Ilharco*1, Alex Fang*1, Jonathan Hayase1, nis5, Thao Nguyen1, Ryan Marten7,9, Mitchell Wortsman1, eyu Zhang1, Eyal Orgad3, Rahim Entezari10, Giannis Daras5, Vivek Ramanujan1, Yonatan Bitton11, Kalyani Marathe1,

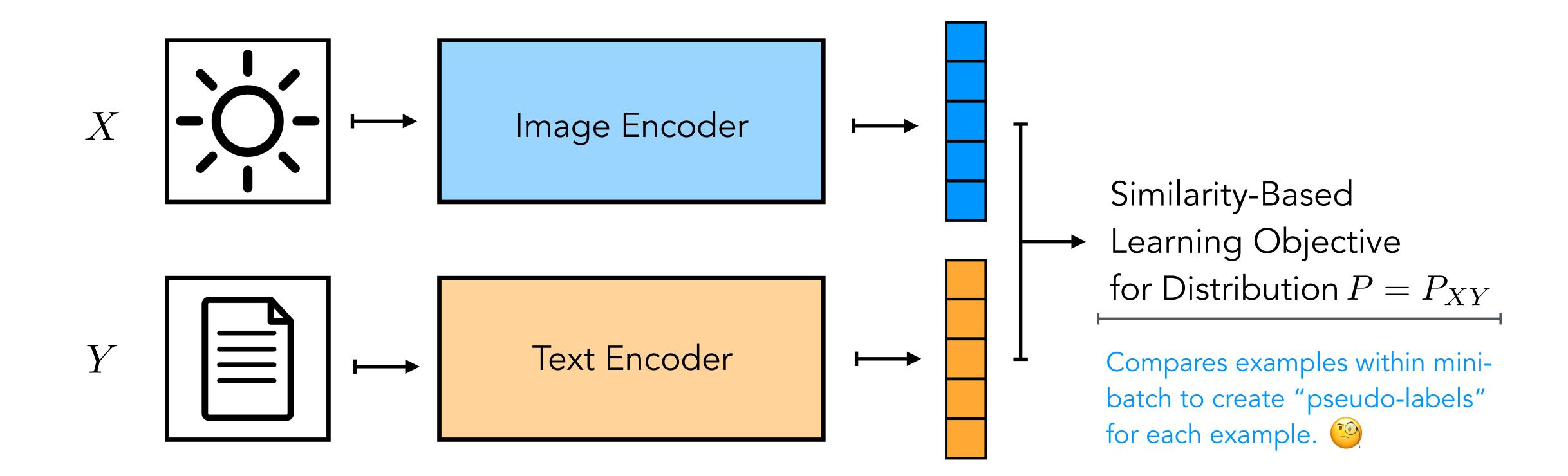
Stephen Mussmann¹, Richard Vencu⁶, Mehdi Cherti^{6,8}, Ranjay Krishna¹, Pang Wei Koh^{1,12}, Olga Saukh¹⁰, Alexander Ratner^{1,13}, Shuran Song², Hannaneh Hajishirzi^{1,7}, Ali Farhadi¹, Romain Beaumont⁶, Sewoong Oh¹, Alex Dimakis⁵, Jenia Jitsev^{6,8}, Yair Carmon³, Vaishaal Shankar⁴, Ludwig Schmidt^{1,6,7}

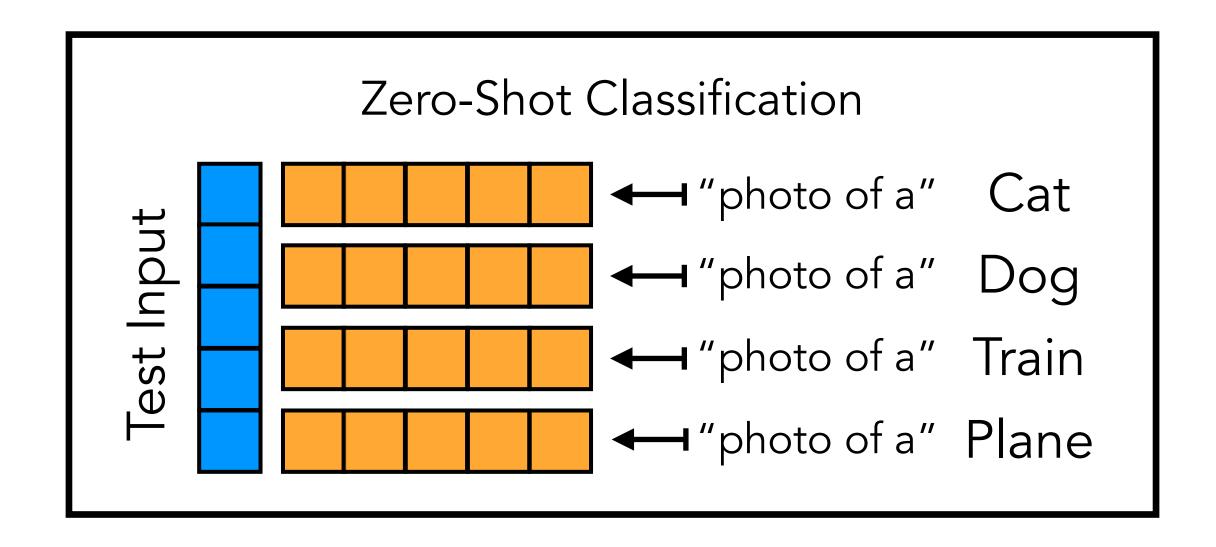


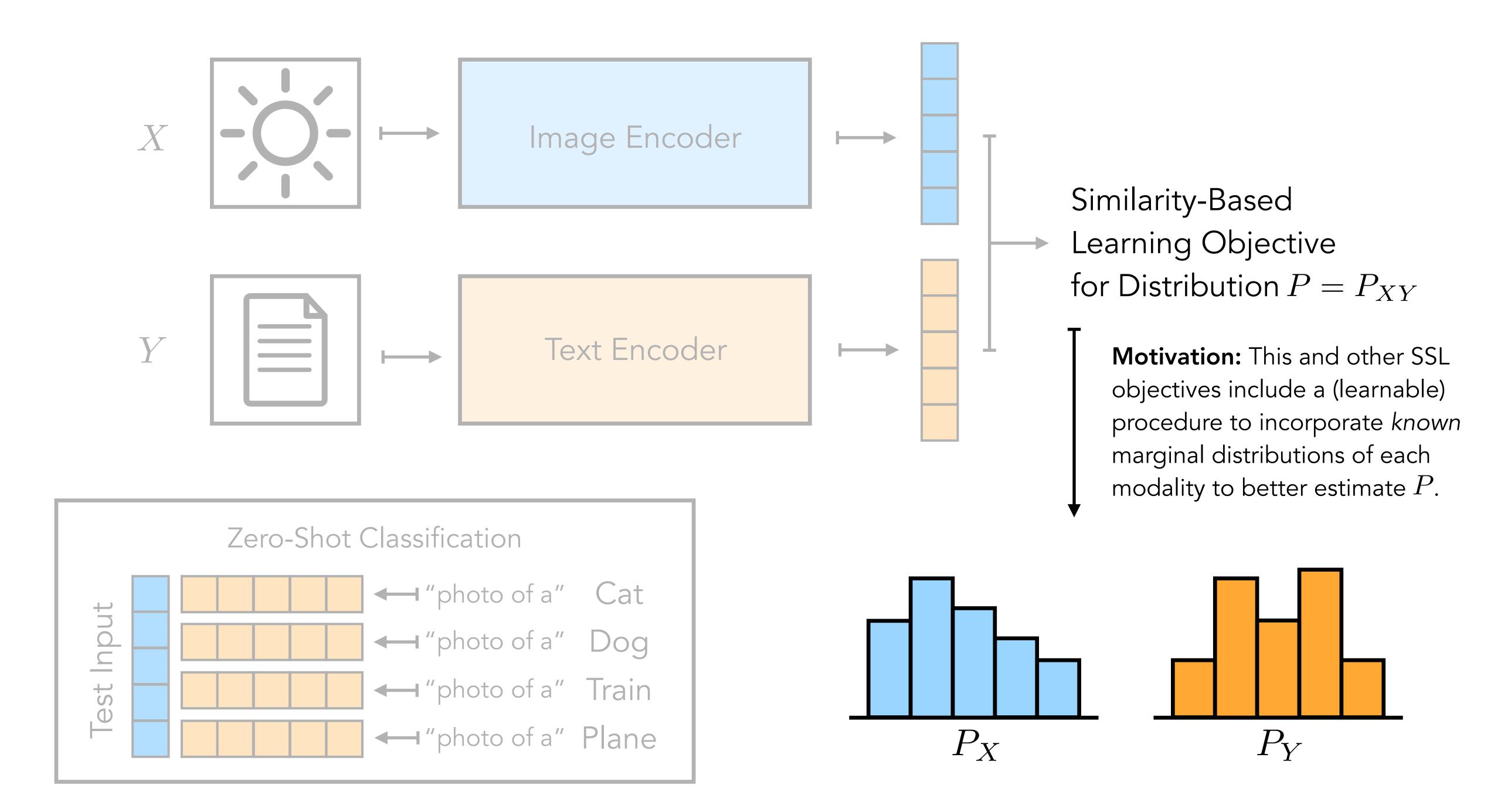












Data from **unknown** joint probability distribution.

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim P$$

Access to **known** marginal distributions.

$$(P_X, P_Y)$$

Goal: estimate the parameter:

$$P(h) = \mathbb{E}_{(X,Y)\sim P} \left[h(X,Y)\right]$$

and characterize how the marginals improve upon

$$P_n(h) = \frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$

Data from **unknown** joint probability distribution.

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim P$$

Access to **known** marginal distributions.

$$(P_X, P_Y)$$

Goal: estimate the parameter:

$$P(h) = \mathbb{E}_{(X,Y)\sim P} \left[h(X,Y)\right]$$

and characterize how the marginals improve upon

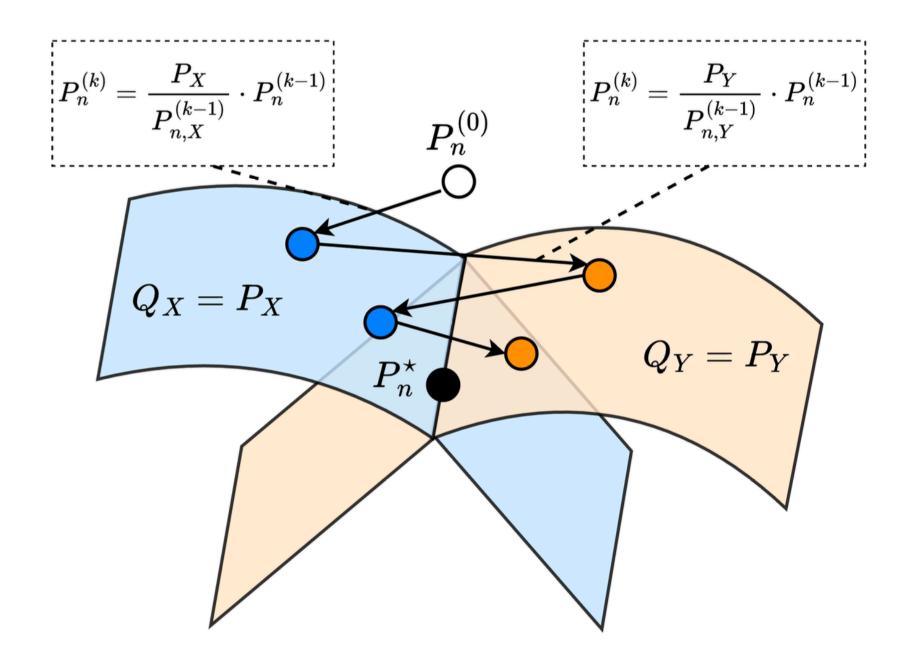
$$P_n(h) = \frac{1}{n} \sum_{i=1}^n h(X_i, Y_i)$$

Data Balancing

Rescale rows and columns by the desired marginals.

$$P_n^{(0)} = P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(X_i, Y_i)}$$

$$P_n^{(k)} = \begin{cases} \frac{P_X}{P_{n, X}^{(k-1)}} \cdot P_n^{(k-1)} & k \text{ odd} \\ \frac{P_Y}{P_{n, Y}^{(k-1)}} \cdot P_n^{(k-1)} & k \text{ even} \end{cases}$$



Data from **unknown** joint probability distribution.

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim P$$

Access to **known** marginal distributions.

$$(P_X, P_Y)$$

Goal: estimate the parameter:

$$P(h) = \mathbb{E}_{(X,Y)\sim P} \left[h(X,Y)\right]$$

and characterize how the marginals improve upon

$$P_n(h) = \frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$

Data Balancing

Rescale rows and columns by the desired marginals.

$$P_n^{(0)} = P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(X_i, Y_i)}$$

$$P_n^{(k)} = \begin{cases} \frac{P_X}{P_{n, X}^{(k-1)}} \cdot P_n^{(k-1)} & k \text{ odd} \\ \frac{P_Y}{P_{n, Y}^{(k-1)}} \cdot P_n^{(k-1)} & k \text{ even} \end{cases}$$

- 1. How does the balanced distribution improve upon the empirical measure **theoretically**?
- 2. What are the **practical** implications for SSL objectives such as CLIP?

Data from **unknown** joint probability distribution.

$$(X_1, Y_1), \ldots, (X_n, Y_n) \sim P$$

Access to **known** marginal distributions.

$$(P_X, P_Y)$$

Goal: estimate the parameter:

$$P(h) = \mathbb{E}_{(X,Y)\sim P} \left[h(X,Y)\right]$$

and characterize how the marginals improve upon

$$P_n(h) = \frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$

Data Balancing

Rescale rows and columns by the desired marginals.

$$P_n^{(0)} = P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(X_i, Y_i)}$$

$$P_n^{(k)} = \begin{cases} \frac{P_X}{P_{n, X}^{(k-1)}} \cdot P_n^{(k-1)} & k \text{ odd} \\ \frac{P_Y}{P_{n, Y}^{(k-1)}} \cdot P_n^{(k-1)} & k \text{ even} \end{cases}$$

Theorem. The iterates of balancing satisfy

$$\mathbb{E}_P \left| P_n^{(k)}(h) - P(h) \right|^2 = \frac{\sigma_k^2}{n} + \tilde{O}\left(\frac{k^6}{n^{3/2}}\right) \to \frac{\sigma_0^2 - \sigma_{\text{gap}}^2}{n}$$

Novel recursion formula for estimation error that is of independent interest (OT, data-centric ML, etc.)

Data from unknown joint probability distribution.

$$(X_1, Y_1), \dots, (X_n, Y_n) \sim P$$

Access to **known** marginal distributions.

$$(P_X, P_Y)$$

Goal: estimate the parameter:

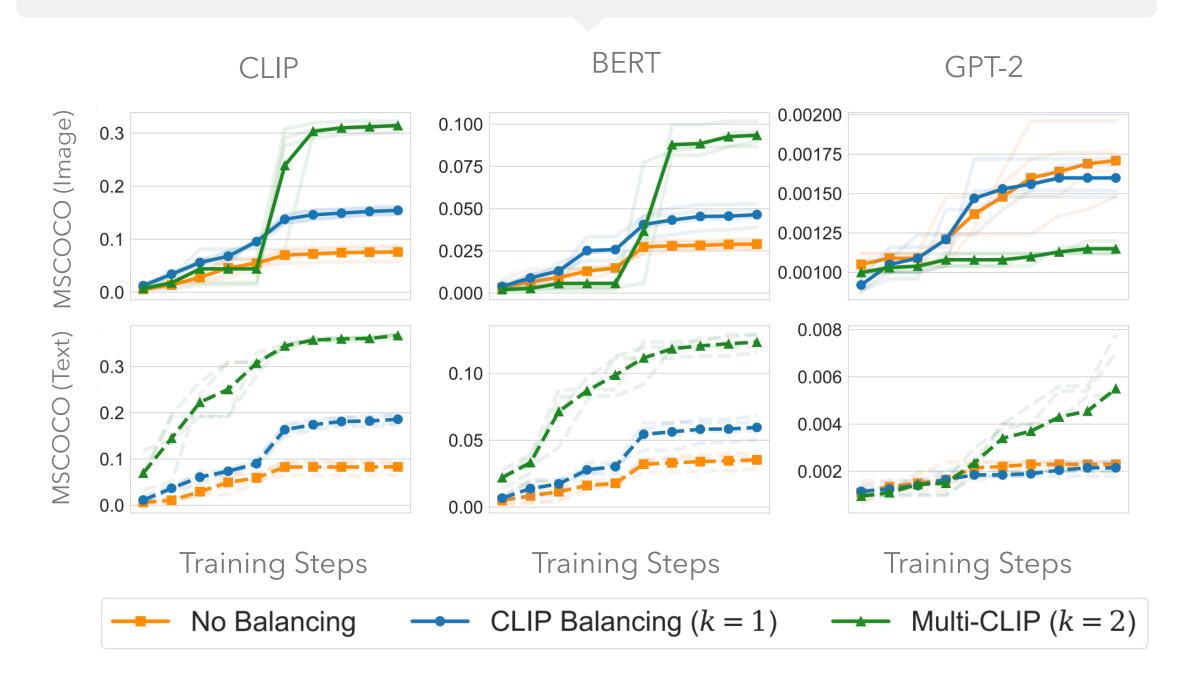
$$P(h) = \mathbb{E}_{(X,Y)\sim P} \left[h(X,Y)\right]$$

and characterize how the marginals improve upon

$$P_n(h) = \frac{1}{n} \sum_{i=1}^n h(X_i, Y_i)$$

Balancing mini-batches to improve the stability of the CLIP training objective.

Using a balanced objective increases zero-shot retrieval (recall) across datasets and embedding architectures.



Data from unknown joint probability distribution.

$$(X_1,Y_1),\ldots,(X_n,Y_n)\sim P$$

Access to **known** marginal distributions.

$$(P_X, P_Y)$$

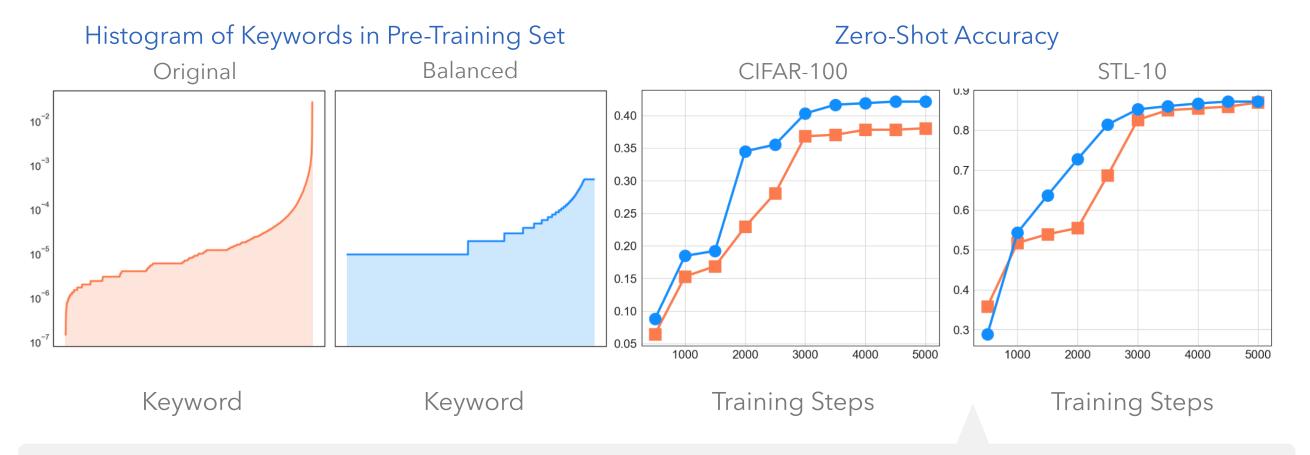
Goal: estimate the parameter:

$$P(h) = \mathbb{E}_{(X,Y)\sim P} \left[h(X,Y)\right]$$

and characterize how the marginals improve upon

$$P_n(h) = \frac{1}{n} \sum_{i=1}^n h(X_i, Y_i)$$

CLIP models trained on the balanced pre-training set improve over those trained on the original.



Balancing at scale improves performance on zero-shot classification.

Data from unknown joint probability distribution.

$$(X_1, Y_1), \dots, (X_n, Y_n) \sim P$$

Access to **known** marginal distributions.

$$(P_X, P_Y)$$

Goal: estimate the parameter:

$$P(h) = \mathbb{E}_{(X,Y)\sim P} \left[h(X,Y)\right]$$

and characterize how the marginals improve upon

$$P_n(h) = \frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$

Thank you!

