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Challenges with traditional 
setup

• Takes human and compute time to design the 
model and tune hyperparameters

• Hard to deploy in applications with low data 
availability

• Eg: Forecasting Pandemic during initial stages

• Generalize knowledge across multiple tasks 
(forecasting, classification, anomaly detection, 
etc.)

• Eg
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Advantages: Foundation 
Models

• Better generalized performance across 
domains

• Requires significantly less/no training time for 
adaptation to domain

• Much smaller data requirement for adaptation 
to SOTA performance
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Challenge

• Adding time-series data to foundation models 
is non-trivial. Why?

• Complex and Heterogenous patterns across 
domains
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Pre-trained time-series models 
across multiple domains

• Time-series from multiple domains: Power, 
Economics, Epidemiology, etc.

• Need to effectively capture patterns across 
different domains
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Tokenization for Time-
series

• Single time-steps not meaningful

Kamarthi and Prakash 2024 8

Language Tokens

Semanitically Meaningful

Time-series Tokens

Not Meaningful

10, 33.4, 55.1

10 33.4 55.1



Segment Tokens

• Segments of time-series can provide semantic 
meaning:
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Segmentation Strategy
• Option 1: Choose a uniform strategy

• But different domains have different dynamics 
and require different strategies

• Different time-periods in same time-series 
may require different strategies
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Soln: Adaptive Segmentation

• Model figures optimal segmentation strategy 
via scoring mechanism during pre-training

• Step 1: Scoring model to score the importance 
of each segment

• Step 2: Prune optimal set of segments based 
on the scores of all segments
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Scoring Model

• Step 1: Scoring model to score the importance 
of each segment
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Pruning Segments 
(Contd.)

• Select segments with highest scores that cover 
the entire time-series
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Learning Optimal 
Segmentation

• Segmentation scoring model trained on the 
SSL losses: 

• Choose segmentation strategy that minimizes 
the SSL losses
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Adaptive Segmentation 
(Contd.)

• Chosen segments are used by the model
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Self-supervised learning 
task

• Random masking: Reconstruct segments of 
time-series

• Enables model to learn temporal dynamics 
across the time-series w/o supervision 
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Segmented Time-series 
as tokens

• Each segment is encoded as fixed length token 
embedding

• Bonus: Faster and memory efficient vs time-steps as 
tokens
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Experiments

• Pre-trained on datsets from epidemiology, 
Power, Traffic, Demand/Sales, Stocks, 
Behavioral data

• Trained on unseen applications & datasets 
from these domains

• Tasks: Forecasting & Classification
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Forecasting
• Best ranked model across tasks from diverse 

domains: Electricity, Epidemiology, Traffic, 
Demand, Retail

• Beats domain-specific models in most cases
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Classification

• Adapt to classification by simply adding a final 
fine-tuned classification layer.

• Outperforms SOTA classification models across 
over 35 tasks
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Zero-shot forecasting

• LPTM outperforms SOTA pre-trained models in 
zero-shot forecasting

• Includes foundational models with 2x-10x 
more parameters (TimesFM, MOIRAI, 
Chronos)
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Fine-tuned performance

• LPTM outperforms SOTA pre-trained models in 
zero-shot forecasting

• Requires much less data and 20-50% lesser 
compute to converge to best fine-tuned 
performance
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Other Results
• Quicker training time than most competitive 

baselines in all benchmarks

• Segments selected capture high variance and 
important time-series regions (peak of 
epidemic, changepoints)
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Thank you!

• Code: AdityaLab/LPTM

• Acknowledgements:  NSF (Expeditions CCF-1918770, CAREER IIS-2028586,Medium IIS-
1955883, Medium IIS-2403240, Medium IIS-2106961, PIPP CCF-2200269), CDC MInD 
program, Meta faculty gifts, and funds/computing resources from Georgia Tech
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https://github.com/AdityaLab/LPTM
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