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Causality in Machine Learning

* Fairness: Is there any confounder in your data which might give
you wrong prediction?
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* Robustness: Is there any bias in your data that might affect your
model accuracy in the test domain?
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Smoking Gene .
Causal effect of smoking on Lung cancer,

P(C|d0(S)) =7 Identification algorithms [1]
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The second graph is taken from [4].
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* |[nterventional distributions:

P(N|do(C)) or P(M|do(V))? (&

An approach to sample from high-dimensional interventional distribution!
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Problem Definition

* Input:
* Observational training data
* Acausal graph

e Goal:

* Perform an intervention do(X=x)
* Estimate numeric values of the causal effect.
* Or Sample from the high-dimensional interventional distribution

do(X = ) P(yldo(x)) Y ~ P(y|do(z))



We propose ID-GEN
a sampling version of the Identification algorithm
for semi-Markovian causal models
using conditional generative models.
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|ID-GEN: Proposed Approach

* First, we decompose the interventional sampling problem into
multiple sub-problems based on c-components.

if C(G\ X) ={S51,...,Sr} then {Step 4}
forieach S; € C(G \ X) = {S1,...,5k} do Backdoor Graph

Z:ID'GEN(S’L, X=V \ Si’ G’ X’ é’ D) ///#‘Q
*/

P(y|do(x ZP z|do(x))P(y|do(x, 2



|ID-GEN: Proposed Approach

* Next, we train a set of conditional
models for each factor.

Algorithm 2 ConditionalGMs(Y,X,G,D,X,G)

1: for each V; € {X U X} do
2:  Add node (V;,0) to H {Initialized H = 0}
3: for each V; € Y in the topological order 7 do

4:  Let My, be a model trained on D[VH /A 1)]
such that My, (V—ﬂgz_l)) ~ (’U%|’U 1))

5:  Addnode (V;, My,) to H

6: AddedgeV,;, — VitoH forall V; € 7AS

7: Return H.

Backdoor Grabh




Backdoor Graph

ID-GEN: Proposed Approach ,/’;@\

* Finally, we connect them to build a neural network
called sampling network.

Z] ~ P(Z)
| M

Algorithm 3 MergeNetwork({#;}v:) Z EZ

1: Imput: Set of sampling networks {H; }vi;. \ 4

2: Output: A connected DAG sampling network . + - X=x —p| My B> Y

3: for H; € {H:}vi do D[Z]

4.  for My, € H; do v

5 if MV = () and AMy, € H.,Vr such that px]— L

V; = Vi and My, # ( then
6: MV MV
7: Return H = {H; }33 {All H; are connected.} [Y] ™~ P(Y|X7 Z)

We can generate interventional samples! Z, Y|~ P(Z)x P(Y|X, Z)



Can we always do this?

Theorem: ID-GEN iIs sound and complete for
any identifiable query p(y|do(x)).



Fairness: CelebA Image to Image Translation.

* Assess large generative models for the Male to the Female domain
translation task.

* Translation: Causal or spurious?

* Correlation among different attributes learned by models.




CelebA Image to Image Translation:

* Original image I,

* Edited image |, based on sex and age.

* All attributes of I, and L.

* A: new additional attributes (ex: Makeup)

* What is the causal effect of changing Y oung
the Male domain to the Female domain / Y ~
on the appearance of a new attribute? \ 3\ v i
Male

P(Aldo(Male = 0)). Pp—» A+ P



Conditional Generative Models are Sufficient to Sample from
Any Causal Effect Estimand

P(Iy|Do(Male = 0)) = Iy ~ Mp,|[|Y oung ~ My (1)
/ P(I;|Male = 0,Y oung, I ) P(Y oung, I1) Iy ~ MIQ (Ma’le =0, YOungv 12)
Y oung,I1

’ Y oung

et M, =My

AL /‘"+ ¥

Male

P, —p A 4+— P, Male = 0—| M,

 For M1, use the following
generative models:
« EGSDE [4]
* StarGAN [5]




Observations

* EGSDE adds

* Causal
* WearingLipstick attribute to 82%.
* HeavyMakeup: 69.28%

* Non-causal

* Attractive(37.61%) ?
* Young(24.76%) ?

Attribute appearance (%)
oo
o

=
o

o

~J
o

[=)]
o

u
o

iy
(=]

w
o

M
o

82.38%
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I StarGAN: P(A|do(Male = 0)
B StarGAN: P(A|Young, do(Male = 0)
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|ID-GEN for Spurious Correlation & Explainability
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Figure 6: Left: Baseline vs our causal graph. Right: images for specific prompt w/ and w/o pneumonia.
Inferred attributes are shown with their likelihood. Blue indicates changes compared to healthy.



Takeaway!

* Given observational data and a causal graph,

* Conditional generative models are indeed sufficient to sample
from any causal effect estimand.

* Codes are available at: github.com/musfigshohan/IDGEN

Thank you!
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