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Hierarchical Label Structures widely exist in many real-world datasets

| insects | | people | | trees |

CIFAR100 label hierarchy [Krizhevsky et. al, 2009]
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ImageNet-1k label hierarchy [Li et. al, 2009]



Motivation
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Most representation learning methods — permutation invariant
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Ignores the hierarchical semantic relationships between classes in the

feature space

Permutation

Invariant Learning
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Permutation Invariant Representations x
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Structured Representation Learning — hierarchy informed representations [Zeng et. al, 2022]
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[  Distances between the representations in the feature space are Structure Informed Representations

consistent with the semantic context.



ez-CophenetIC Correlation Coefficient (CPCC) g:;gégség;wgsvsﬂag

d [Zeng et. al, 2022] — Use Cophenetic Correlation Coefficient (CPCC) [Sokal and Rohlf, 1962] for structural

regularization

> (dr (i, v;) — dr)(p(vi,v5) — P)

Q  Definion — CPCC(dr, p) i= ——s? __
> (d7(visv) —d7)? [0 (p(visvs) — p)?
1<J 1<)
Q P(Ui,vj) := Euclidean (22) distance between two class centroids of the fine class representations

(W]

dr(vi,v;) := The shortest tree distance between the two classes in the hierarchy

[  Composite optimization objective with structured regularization on the hierarchy:

‘C(D) = Z gFlat(wa Y, 0) w) — Q- CPCC(dT, p)
(x,y)€D
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i

A Cannot embed some trees in the Euclidean space (@2) exactly — Distort the
underlying semantic context in the hierarchy

[  Let us attempt to embed leaf nodes A, B, C, D, E into the Euclidean space.
d CG=DG=EG=1,CD=DE=CE=2
= CD, DE, CE must be on a plane with equilateral ACDE
= Green classes (A, B) have same distance 4 to Yellow classes (C,D,E)
= A, B must be on the line perpendicular to A _and intersecting the plane at
O (the barycenter of A )
= Due to uniqueness and symmetry of A,B, we must have AO = BO = 1

2 = We must have AB =2
~——
B
O —_ O AO=1, OE=(2/3)/3, AE = 4, which contradicts the Pythagorean Theorem




Solution: Hyperbolic Geometry

4 Hyperbolic Geometry — more suitable alternative:

a

Non euclidean spaces with negative curvature
unlike €,

Hyperbolic spaces are continuous analogues of
trees

Allow embedding tree-like data in finite
dimensions and low distortion [Sarkar, 2012]
Used in NLP, Image Classification, Object

Detection, action retrieval ...

A Several isometric models — easy transformations

between geometries

J

(right) relationship between the commonly used

Poincare, Klein and Hyperboloid models
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Elliptic geometry  Euclidean geometry Hyperbolic geometry
positive curvature zero curvature negative curvature

— T S T BT |

sphere Euclidean plane saddle surface

[Non-euclidean geometry, Wikipedia 2020]

Hyperboloid
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A Goal: accurately and explicitly embed the label hierarchy — representation space

d HypStructure: label-hierarchy based regularization approach for structured learning in

hyperbolic space

4 Advantages:

a

|
|
|

[

Can be easily combined with any standard task losses for optimization

Enables learning of discriminative and hierarchy-informed features

More interpretable and tree-like representations

Beneficial across tasks and datasets — representation learning, ID classification, OOD
detection

Formal analysis of the hierarchy-informed features — better understanding of structured

representation learning 8
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HypStructure: HypCPCC and HypCenter ;}:’%;%gggg@gswggysf;ggg
d HypStructure: Combination of two losses (1) Hyperbolic Cophenetic Correlation Coefficient

Loss (HypCPCC) and (2) Hyperbolic Centering Loss (HypCenter)

HypCPCC: extend €2—CPCC [Zeng et. al, 2022] to the hyperbolic space
I.  map Euclidean vectors to Poincare space
Il. compute class prototypes

lll.  use Poincare distance for CPCC computation

HypCenter: Inspired from Sarkar’s construction [2012]
A place root node at the origin

3 chnter loss — minimize the norm of the hyperbolic representations of the root

Learn hierarchy-informed representations by minimizing:

L(D)= Y  lpu(z,y,0) — - HypCPCC(dr, dg,) + B - Loener(, 0)
(x,y)€D
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Algorithm 1 HypStructure: Hyperbolic Structured Representation Learning

Input: Batch size B, Label tree 7 = (V, E, e), Number of epochs K, Task Loss formulation (g,
Encoder fy, Classifier Head g,,, Learning Rate 7, Hyperparameters «, 3
1: Initialize model parameters: 6, w
2: forepoch=1,2,... K do
£ for batch=1,2,..., B do

4: Get image-label pairs: {(x;,v;)} 2.,
55 Forward pass to compute the representations: (21 ...zg5) < (fo(x1) ... (fo(xp))
Flat Loss Compute the Task 10ss: Cpia (9w (2i), ¥:)
Euclidean to Poincare Get hyperbolic representations using exp. map (eq. (6)): 2; < exp§(z;)
Centroid Calculate class prototypes using hyp. Averaging (eq. (8)): w; <— HypAve, (27, ... 2;)
Poincare Distance  Compute pairwise hyp. distances (eq. (5)) Vv;,v; € V : p(vi, v;) < dg, (wi, w;)
10: Get hyp. CPCC loss (eq. (3): HypCPCC(d, p)
Root Centering ~ Compute hyp. centering loss using (Equation (8)): leenter = ||HypAvey(21,. .., 28]|)
12: Get total loss using Equation (10): £(Dp)
13: Compute Gradients for learnable parameters at time ¢: u¢ (6, w) < Vg ,L(Dp)
14: Refresh the parameters: (6, w)¢ 41 < (6, w); — £ue(0,w)

Output: (z1,...2n);0,w

10
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A Experiments on three benchmark datasets: CIFAR10, CIFAR100, ImageNet100

Results: Classification and Embedding Hierarchy

d  Compared to Flat and €,-CPCC [Zeng et. al, 2022]
A Reduced distortion in embedding the hierarchy (Gromov’s & and CPCC), even in
low-dimensional regimes — more tree-like features

A Improved Coarse and Fine Classification accuracies

Dataset Distortion of Hierarchy Classification Accuracy

Method
(Backbone) b () CPCC(1)  Fine(H)  Coarse(l) N i i
———— Flat 0232 (0.001) 0.573(0.002) 94.64(0.12) 99.16 (0.04) i

(ResNer.1§) . (2"CPCC_ 0.174(0.002) 0966 (0.001) 94.47 (0.13) 98.91 (0.02) Sos

HypStructure 0.094 (0.003) 0.992 (0.001) 94.79 (0.14) 99.18 (0.04) o016

€

CIEARTO0 Flat 0.209 (0.002) 0.534 (0.119) 74.96 (0.14) 84.15(0.19) S 014
(ResNet34) . (2-CPCC_ 0213 (0.006) 0779 (0.002) 7607 (0.19) 8528 (0.32) S = rprereres

HypStructure 0.127 (0.016) 0.766 (0.007) 76.68 (0.22) 86.01 (0.13) e tcpec s12)
M Flat 0.168 (0.003)  0.429 (0.002) 90.01 (0.07) 90.77 (0.11) 191 —— HypStructure (Ours)
(ResNet3d) . (2CPCC 0213 (0.009) 0834 (0.002) 89.57 (0.38) 90.34 (0.28) A i -

HypStructure 0.134(0.001) 0.841(0.001) 90.12(0.01) 90.84 (0.02) “Embedding Dimension

11



Visualization: Learnt Representations £ e oy

d  Qualitative analysis of the learnt representations

A Fine classes arrange on the Poincare disk according to the hierarchy

d HypStructure — leads to sharper and more discriminative features

A Fine classes of the same coarse parent (same shade of color) are grouped closer

Hyperbolic UMAP: HypStructure on CIFAR10 tSNE: Flat on CIFAR100 tSNE: HypStructure on CIFAR100
12
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Results: OOD Detection %3%2‘585@&%?2%’?&32

[  Out-of-Distribution (OOD) detection: detection of samples that do not belong to the in-distribution (ID)

d  Mahalanobis Score:
s(@) = (f(z) —p) 'S f(z) — p)
d  Experiments on 9 real-world OOD datasets for 3 ID datasets with HypStructure:
O  Consistent improvement in the OOD detection AUROC across OOD datasets

O  Improvement in the ID vs OOD feature separation in the Poincare Disk

Method AUROC | Method AUROC | Method AUROC
CIFAR10 | CIFAR100 | ImageNet100
SSD+ 97.38 | SSD+ 8590 | SSD+ 92.46
KNN+ 97.22 | KNN+ 86.14 | KNN+ 92.74
¢,-CPCC 76.67 | ¢,-CPCC 85.26 | £o-CPCC 91.33

HypStructure 97.15 HypStructure 88.21 HypStructure 93.83

Average AUROC of OOD Detection Hyperbolic UMAP using HypStructure:
using Mahalanobis Distance CIFAR100 (ID) vs SVHN (OOD)

13



Theoretical Analysis ;:h

d  Motivation: HypStructure with Mahalanobis score leads to improved OOD detection.
s(x) = (f(x) —p) ' 7 (f(z) — p)
A Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for CPCC-based
representations.
A Representation Matrix Z : n x d, Kernel Matrix K = ZZ" : n x n.

Theorem 5.1 (Eigenspectrum of Structured Representation with Balanced Label Tree). Ler 7
be a balanced tree with height H, such that each level has C}, nodes, h € [0, H|. Let us denote each

entry of K as r where h is the height of the lowest common ancestor of the row and the column
sample. If r* > 0,Vh, then: (i) For h = 0, we have Cy — C; eigenvalues Ay = 1 — r'. (ii) For
0 < h < H —1, we have Cj, — Cp11 eigenvalues \r, = \p_1 + (1 — rh+1)g—2. (iii) The last

eigenvalue is \g = Ag—1 + Cort.
A Theorem A.2: This statement can be generalized to arbitrary label tree.

14
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A Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for
CPCC-based representations.

—e— Flat
—e— [>-CPCC
—e— HypStructure

d  Example: CIFAR100
(A 20 coarse classes

Eigenvalue

(A 1 coarse class — 5 fine classes

0 20 40 60 80 100

Index
Kernel Matrix K Eigenspectrum of K
A Implication: Coarse directions might be 07 { :
o6l i
sufficient for OOD detection. g 031 YRR
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CIFAR100 vs SVHN with top k-th principal component 15



Summary, Contributions and Open Questions ?;.;Twégée;;wgsmﬁaz

A HypStructure:

(A Hyperbolic structured regularization approach to accurately and explicitly embed the label

hierarchy, address the shortcomings of ¢ -cPcc

A Effective for both full training and fine-tuning models across classification, hierarchy
embedding and OOD detection tasks

A More interpretable and tree-like representations

A Formal analysis of the eigenspectrum of hierarchy-informed features

A Open Questions:
A Understanding the impact of noisy hierarchies
A Using different models of hyperbolic geometry
A Error bounds of CPCC style structured regularization objectives

16
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