
Fan-Yun Sun, S. I. Harini, Angela Yi, Yihan Zhou, Alex Zook, Jonathan Tremblay, 
Logan Cross, Jiajun Wu, Nick Haber

FactorSim: Generative Simulation via 
Factorized Representation
NeurIPS 2024



Motivation
How can we “distill” policies from foundation models?

Expert Policies

Large Language Model

generate simulations



Input prompt:

Create a bird character, visually represented as a simple 
rectangle within the game window. Introduce gravity, causing 
the bird to continuously fall slowly. Allow the bird to 'jump' or 
accelerate upwards in response to a player's mouse click, 
temporarily overcoming gravity. Periodically spawn pairs of 
vertical pipes moving from right to left across the screen. 
Each pair should have a gap for the bird to pass through, and 
their heights should vary randomly. If the bird makes contact 
with the ground, pipes or goes above the top of the screen 
the game is over. Implement the following scoring system: for 
each pipe it passes through it gains a positive reward of +1. 
Each time a terminal state is reached it receives a negative 
reward of -1. When the game ends, display a "Game Over!" 
messagea and stop all the motion of the game. Show the 
current score in the top-left corner of the screen during 
gameplay …

 Buggy simulations :(



Problems when LLMs are asked to generate 
complex simulations

• Code disregards prompt specifications

• Limited context lengths

• Irrelevant context hurts performance

Levy, Mosh, Alon Jacoby, and Yoav Goldberg. "Same task, more tokens: the impact of input length on the reasoning performance of large language models." arXiv preprint arXiv:2402.14848 (2024).



How do we generate prompt-aligned simulations?

• The distribution we want to model is



Formulating the problem

• The distribution we want to model is

• To generate complicated simulations, we generate iteratively!



Let’s see it in action



Can we do better?



Motivation
— LLMs cannot generate code correctly given complex prompt logic

• The distribution we want to model is



FactorSim

• Model the generation process as expanding the state space of a POMDP.



FactorSim
— keypoints

• Model the generation process as expanding the state space of a POMDP.

• A chain of thought processes that exploits the mathematical structure of 
POMDP using the model-view-controller design pattern.

• Use LLMs to perform contextual retrieval of state variables.







Experiments - Two Domains

• 2D Reinforcement Learning Game Generation

• Robotics Task Generation



Experiment 1: Game Generation
- Pygame Learning Environment



Experiment 1: Game Generation
- Pygame Learning Environment



1. Better code generation accuracy



2. Zero-shot transfer results



Robotics Task Generation

Wang, Lirui, et al. "Gensim: Generating robotic 
simulation tasks via large language 
models." arXiv preprint arXiv:2310.01361 (2023).



Robotic Tasks Results





Some extensions



Thank you!


