
Batched Energy-Entropy acquisition for Bayesian optimization
Felix Teufel,  Carsten Stahlhut, Jesper Ferkinghoff-Borg

q-UCB does not allow 
for controlling the 
explore-exploit trade-
off with large 
batches. A GP 
surrogate 
(background) was 
initialized with 100 
random points of the 
Ackley function. Kappa 
was set to 0.1 for 
exploitation and 100 
for exploration.The BEEBO acquisition function

Benchmark experiments
Bayesian optimization (BO) enables round-based optimization of black-box 
problems. In many application domains, it is often most efficient to conduct 
experiments that acquire points in parallel. However, commonly used 
acquisition functions are often high-dimensional and intractable in batch 
mode, leading to the use of sampling-based alternatives. 

We propose a statistical physics inspired acquisition function that can natively 
handle batches. Batched Energy-Entropy acquisition for BO (BEEBO) enables 
tight control of the explore-exploit trade-off of the optimization process.

• Parallel gradient-based optimization of points
• No sampling and Monte Carlo integrals
• Tight control of the explore-exploit trade-off
• Risk-averse BO under heteroskedastic noise

• 10 rounds, batch size 100
• Final batch at full exploit (T=0)
• 26 test problems
• 10 replicates
• Compare to q-UCB at equal explore-exploit rates
• Additional comparisons to default q-EI, Thompson sampling (TS), Kriging Believer (KB), GIBBON and TuRBO

Availability

Energy-Exploit Entropy-ExploreEntropy – Explore

• Assume we have a posterior probability distribution over the surrogate function f evaluated at a batch of points x, f(x) ∼ P(f | D, x).
• The lack of knowledge of f at x is quantified by the differential entropy H :

• We can contrast H with the entropy after we obtain measurements at 

• Using these two terms, we can compute the information gain, the expected reduction in entropy.

• In BEEBO, we use I(x) as the explore component of the acquisition function.  When using a GP, the Gaussian posterior covariance C(x), 
and therefore the entropy, only depends on the positions of x, not on the actual observed values y.

• We can therefore compute I(x) in closed form by adding x to the the GP’s training data without observing y. 

Energy - Exploit

• To quantify the optimality of points, we need to summarize the distribution f(x) using the expectation of a scalar function,                       .
• We use a softmax weighted sum, as this allows us to smoothly interpolate between the expected mean and the expected maximum of the 

distribution using the softmax inverse temperature β (mean at 0, maximum at infinity).
• We multiply the expectation with the batch size Q so that it scales linearly, as does I(x).

• The softmax-weighted sum of a multivariate normal is not available in closed form. We apply Taylor expansion to derive a fully differentiable 
closed form approximation.

BEEBO with GPs
Optimizing BEEBO with GPs
All terms in BEEBO are fully differentiable. To 
maximize the acquisition function, we perform joint 
gradient descent on all batch points simultaneously.

Low-rank updates can be used to add points to 
(augment) the posterior covariance.

Optimization benchmark. Best observed value after 10 rounds of batched BO. BEEBO outperforms q-UCB at equal 
trade-offs.

Performance on the heteroskedastic Branin problem. BEEBO preferentially optimizes 
towards the low-noise optimum.

Controllability benchmark. Batch instantaneous regret at round 10 (acquired at T=0, full exploit). Hyperparameter-free 
baselines are run at default.

BO on test problems BO under heteroskedastic noise

Branin function with 
heteroskedastic noise. The 
function has three optima (left), 
with optima 2 and 3 being very 
noisy (right). Risk-averse BO 
should preferentially optimize 
towards optimum 1.

Runtime
BEEBO’s optimization runtime is competitive with 
iterative approaches such as KB and greatly improves 
upon GIBBON. Reparametrization trick methods (q-UCB, 
q-EI) are orders of magnitude faster at a cost of MC 
integration accuracy. All methods were run in BoTorch.

Control problems

BO experiments on robot control problems. meanBEEBO is more robust to 
hyperparameters than maxBEEBO. KB is a very strong baseline.

Acquiring 100 points on a surrogate of the Ackley function 
(background). BEEBO enables controllable acquisition.

Outlook
• More memory-efficient predictive covariances (GP cubic 

scaling is constraining larger-scale BO on GPU)
• Generalization to multi-objective BO (vector-valued energy 

term)
• Optimal scheduling of the temperature
• Information gain approximations for non-GP surrogate 

models

Summary
• Competitive performance to existing sampling-based or greedy 

heuristic batched BO methods
• Trade-off hyperparameter has predictable behaviour regardless 

of batch size
• Information gain enables risk-averse BO under heteroskedastic 

noise (sensitive to good surrogate for σ ).


