-.‘.’r}.ﬂ.'é‘...&.‘g
3* " NEURAL INFORMATION
"’32. , PROCESSING SYSTEMS
[

RoOPINN: Region Optimized
Physics-Informed Neural Networks

Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, Mingsheng Long™
School of Software, BNRist, Tsinghua University, China
{wuhx23,1luohk19,mayz20}@mails.tsinghua.edu.cn, {jimwang,mingsheng}@tsinghua.edu.cn

Haixu Wu Huakun Luo Yuezhou Ma Jianmin Wang Mingsheng Long

Partial Differential Equations

Inner Stress
of Solid Materials

Navier-Stokes Equation for Fluid Dynamics

I [I
| L |
' 5 ! :
| p

| at—l-v (pU) =0 i i |
I I

U

| 5 TU-VU=F+ v (T eqe;) i i 0% i
| 1yr2 || p° 5 +V-o=0 |
| a(e+§U)+U-V(e+—U2)—f—U+—V-(U-T--e-e-)+§AT L ot |
o V)T T AT i
I

Partial Differential Equations

o ‘ \

Atmospheric circulation Stress

Millennium Prize Problems
%222%1‘5&‘5‘;‘:’ > Birch and Swinnerton-Dyer conjecture > Riemann hypothesis

» Hodge conjecture » Yang—Mills existence and mass gap
> Navier-Stokes existence and smoothness > Poincaré conjecture (Solved)

» P versus NP problem

It is really hard (usually impossible) to obtain the analytic solution of PDEs

Neural PDE Solvers

~ B 4)
Physics-Informed
Y <:> Neural Operators
Neural Networks
\-) \-)
Small data Some data Big data
Data
Physics

Lots of physics Some physics No physics

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422-440 (2021)

Physics-Informed Neural Networks

PDE (v)
ou o’u
ox ox?

Enforcing outputs and gradients of

deep models to satisfy target equations

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422-440 (2021)

Physics-Informed Neural Networks

f

(u)(x®) =0, € Q; Z(u)(x) = 0,2 € Qoy; B(u)(x) =0,z € 012,

Physics-Informed Neural Networks

Sampling>

Physics-Informed Neural Networks

L(ug) =

Convection

Ju Jdu

+ 50— =

Gt dx

0

)\QO

IIJ'T(ue)(«’fL'z)II2

NQO

Sampling>

Naq

s
]_s

f////

3)@+ S 1B @)

PINN Loss on Finite

Collocation Points

Physics-Informed Neural Networks

Nq Naq

3)@+ S 1B @)

fvﬂ | o) (o) +

1=1

A
L(ug) = v

s
;_s

7////

Convection
PINN Loss on Finite
Samplin
ou SOa—u =0 Ping Collocation Points
Gt ox

Point Optimization (optimizing models on scattered points)

Insufficient to obtain an accurate solution for the whole domain

Related Works: High-order regularization

Fu)(x)=0,2€Q; Z(u)(x) =0,z € Qo; B(u)(x) =0,z € 09,

@ Differential function
N g

D Flu)(x) =0 = L% 3

J 7],1;1

Akj

—.7: (ug)(x;)

v Add the high-order constraints of PDEs as regularization terms to loss function

X Calculating high-order derivatives can be extremely time-consuming and unstable

Yu, Jeremy et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems,
Computer Methods in Applied Mechanics and Engineering, 2022

Related Works: Variational formulation

Fu)(x) =0,z € Q; Z(u)(x) =0,z € Qo; B(u)(x) =0,z € 09,

@ Select test functions

(F(u),v)a =0

ﬂ Integrals by parts

[,)]
() J

v High-order derivative operation in loss function is transferred to test functions

£) = 23 | (6) @),)
k=1

X Integral on Q is still hard to compute, requires massive quadrature points

X test function selection requires extra manual effort and M times computation costs

Kharazmi, Ehsan et al. Variational Physics-Informed Neural Networks For Solving Partial Differential Equations.
ArXiv abs/1912.00873, 2019

Region Optimization V.S. Point Optimization

Typical Resampling High-order

Variational Ours
Loss Loss Loss Low-order Loss Loss
° ° ° ° ° ° ° = @ ® ®
° ° ° ® ® ° ° * ¢] ® 2 e @ @ @
° ® ° ® ® ° ° * ¢ ® e ® * ® @ ®
(a) Point Optimization High-order Loss || High-order Tests (b) Region Optimization
Ao o AQ 2o Ao 2
Point Optimization: L(ug) = F(ug)(x:)||? + =2 T(ug)(x:)||? + B(ug)(x;)||?
p (u0) =3 ;n (uo) (@) |I* + 3 ;n (u) (@) + = 223 1B (uo) () |
Region Optimization: L °8°(y4,S) | 3| Z LT8O (4) | o | 5 Z / L(ug, x4+ &)d&
X
xeS

Theoretical Analysis

» Generalization Error in Expectation

Egen = |Es,a [£ (uas), Q) — £ (uas), S)] |
» Basic Assumption

1£(uo,,) — L(ug,, ®)|| < L[|61 — b2l [|VoL(ug,,x) — VoL(ug,,)| < 5|61 — b2].

Theorem 3.3 (Point optimization). Suppose that the loss function L is L-Lipschitz-(3-smooth for 6.
If we run stochastic gradient method with step size o at the t-th step for T’ iterations, we have that:

(1) If L is convex for 0 and o; < %, then Egen < % Zle oy (proved by [13)152]).
(2) If L is bounded by a constant C for all 0, x and is non-convex for 6 with monotonically non-

increasing step sizes oy < é, then Egen, < %' 4 2;(7 éﬂl“:ll)) (tighter bound than [|13)152]).

Theoretical Analysis: Generalization Bound

Theorem 3.5 (Region optimization). Suppose that the point optimization loss function L is L-
Lipschitz and [3-smooth for 0. If we run stochastic gradient method with step size o for T iterations
based on region optimization loss L.°8'°" in Eq. (§), the generalization error in expectation satisfies:

(1) If L is convex for 0 and oy < %, then Egen < (1 — ||%”||) 2|‘I'§I2 23;1 Q.

(2) If L is bounded by a constant C for all 0, x and is non-convex for 0 with monotonically non-
2L%(T—1 Q. . ,

5t’ then Egen, < Igl + ﬂ(|é|_1)) — JL(||Q||)2, where J is a finite number

that depends on the training property at the several beginning iterations.

increasing step sizes o <

» Canonical Point Optimization: Q,, = 0
Cannot benefit from introducing “region”
» Globally sampling points: Q,. = Q
Equivalent to directly optimizing the loss defined on (, generalization error will be reduced to zero.

Cannot be satisfied in practice, which requires the precise calculation of the integral of

Theoretical Analysis: High-order PDE Constraints

Corollary 3.6 (Region optimization for first-order constraints). Suppose that L is bounded by
C for all 0, x and is L-Lipschitz and B-smooth for 0. If we run stochastic gradient method based
on first- order j-th dimension loss function 88 Lreglon for T iterations, the generalization error in

Theorem|3.5(2) still holds when we adopt the md(mtomcally non-increasing step size oy < 5 B =

X

Introducing “region” can implicitly help training PINNs

with high-order constraints.

Example 3.7 (Point optimization fails in optimizing with first-order constraints). Under the
same assumption with Corollary|5.6| we cannot obtain the Lipschitz and smoothness property of
62 L(ug,). For example, suppose that L(ug,z) = |07 /z|, = € [0,1]¢V), which is I-Lipschitz-

1-smooth. However, Vg—_ L(ug,x) is unbounded when x — 0, thereby not Lipschitz constant.
dz) Yy p
J

Practical Algorithm

Algorithm 1 Region Optimized PINN (RoPINN)

Input: number of iterations 7', number of past iterations 7 retained to estimate the trust region,
default region size r, initial PINN parameters 6y and trust region calibration value o9 = 1.
Output: optimized PINN parameters 07.
Initialize an empty buffer to record gradients as g.
fort =0to 7 do

/l Region Optimization with Monte Carlo Approximation (@ Monte Carlo Approximation

Sample points from neighborhood regions: S’ = {x; + £Z-}Li|1, x; €S,§, ~ U|0, ULt](d“)
Calculate loss function £; = L (ug,,S’)
Update 6; to 6; 1 with optimizer (Adam [20], L-BFGS [23]], etc) to minimize loss function L,
/] Trust Region Calibration @ Trust Region Calibration
Record the gradient of parameters g; throughout optimization
Update gradient buffer g by adding g; and keeping the latest Ty elements
Trust region calibration with ;11 = ||o(g)]|
end for

Part 1: Monte Carlo approximation

fort =0to 1 do
/I Region Optimization with Monte Carlo Approximation

Sample points from neighborhood regions: &’ = {x; + £i},|ii|1, x; €S,€; ~U|0, ULt](dH)

Calculate loss function £; = L (ug,,S’)
Update 6, to 6; 1 with optimizer (Adam [20], L-BFGS [23], etc) to minimize loss function L

» Approximate the region optimization gradient by Monte Carlo approximation
E¢vv(n,) [VoL(uo, T +)] = VoL (ug,)

» This sampling-based design is also equivalent to a high-order loss function

Eeva,) (VoL(ug, + €)) = Eeova,) (VGE(UO,) + Vo(£" L1(ug, x)) + O(anz))

Important Note: This design is tailored to PINN loss,

where we can precisely calculate loss at any sampled point.

Part 1: Monte Carlo approximation

fort =0to 1 do
/I Region Optimization with Monte Carlo Approximation

Sample points from neighborhood regions: &’ = {x; + £i},|b-i|1, x; €S,€; ~U|0, U%](dH)

Calculate loss function £; = L (ug,,S’)
Update 6, to 6; 1 with optimizer (Adam [20], L-BFGS [23]], etc) to minimize loss function L,

» Approximate the region optimization gradient by Monte Carlo approximation

Ee~v(a,) [VoL(ug, T +§)] = VoL (up, x)

Theorem 3.8 (Convergence rate). Suppose that there exists a constant H, s.t. Vv and Vx € (Q,
(0T Vo L8100 (ug,)v| < H||v||% If the step size oy = \/t1+—1 decreases over time for T iterations,

the region optimization based on Monte Carlo approximation will converge at the speed of

E [Ivocrn(u, o)) < 0 (=) -

Part 2: Trust Region Calibration

Theorem 3.9 (Gradient estimation error). The estimation error of gradient descent between Monte
Carlo approximation and the original region optimization satisfies:

]E&NU(QT) [”V@E(U@, @ -+ 5) — Vgﬁiegion(’lm, m)||2] * = ||O'£NU(QT) (Veﬁ(’u,g, T + 5))” y (11)

where o represents the standard deviation of gradients in region §1,.. \

y

Region x + Q, Gradient variance within a region.

L , |90-|\ 2L2 T
Recall Generalization error: E,., < (1 — W) ST Y i1 O

» A larger region size r: better generalization but will bring larger gradient estimation error.

Part 2: Trust Region Calibration

fort =0to T do
/I Region Optimization with Monte Carlo Approximation
S|

Sample points from neighborhood regions: &’ = {x; + §,;}.~;, ;i € S, &, ~ U|0 Lt](dﬂ)
Calculate loss function £; = L (ug,,S’)

Update 6; to 6,1 with optimizer (Adam [20], L-BFGS [23], etc) to minimize loss/Afunction L;
/] Trust Region Calibration

Record the gradient of parameters g; throughout optimization
Update gradient buffer g by adding g; and keeping the latest Ty elements

Trust region calibration with 04,1 = ||o(g)]|
end for
Adjust region size according to the gradient "o 1
variance among successive iterations. HJ E~U () (VoL(ug, z +§)) H

v Similar ideas are widely used in deep learning optimizers, such as Adam and AdaGrad, which adopt

multi-iteration statistics as the momentum of gradient descent.

Part 2: Trust Region Calibration

fort =0to T do
/I Region Optimization with Monte Carlo Approximation

Sample points from neighborhood regions: S’ = {x; + §i}r|gil1, x; €S,& ~ U0 Lt](d“)
Calculate loss function £; = L (ug,,S’)

Update 6; to 6,1 with optimizer (Adam [20], L-BFGS [23], etc) to minimize loss/Afunction L;
/] Trust Region Calibration

Record the gradient of parameters g; throughout optimization
Update gradient buffer g by adding g; and keeping the latest Ty elements

Trust region calibration with 04,1 = ||o(g)]|
end for
Adjust region size according to the gradient "o 1
variance among successive iterations. HJ E~U () (VoL(ug, z +§)) H

v The gradient of each iteration can be effectively obtained by retrieving the computation graph.

RoOPINN has no extra gradient or backpropagation calculation w.r.t. point optimization.

Part 2: Trust Region Calibration

fort =0to 7T do
/I Region Optimization with Monte Carlo Approximation
Sample points from neighborhood regions: S’ = {x; + &z‘}l;ill, x; € S,& ~U|0, GLt](d“)
Calculate loss function £; = L (ug,,S’) —
Update 6; to 0,1 with optimizer (Adam [20], L-BFGS [23], etc) to minimize loss function £;
/] Trust Region Calibration
Record the gradient of parameters g; throughout optimization
Update gradient buffer g by adding g; and keeping the latest Ty elements
Trust region calibration with o311 = ||o(g)]|

end for

Theorem 3.11 (Trust region multi-iteration approximation). Suppose that loss function L is

L-Lipschitz and 3-smooth for 0 and the learning rate oy < BLL converges to zero over time t, then the

estimation error can be approximated by the variance of optimization gradients in multiple successive
iterations. Given hyperparameter 1, our multi-iteration approximation is guaranteed by

To

lim o ({vgc(u&_m, zi)}izl) —0 ({vgc(u(;t, z,,;)};”;l) . (14)

t— o0

Theoretical Analysis

Theorem 3.12 (Region Optimization with gradient estimation error). Based on the same as-
sumption in Theorem [3.5| but optimize the model with the approximated region optimization loss
L2PProX(yg) = VoL(ug,x + &),& ~ U(SQ,.) for T iterations, we further denote the upper bound
of gradient estimation error as £, graq = maxy< |V LEPPTOX — Vo LI810|| | then Eyey satisfies:

(1) If L is convex for 6 and o, < 2 Egen = ((1—|Q:|/|2)L + S)|8| Zt | Ot

inversely proportional to |2 | generally o< |2y |

(2) If L is bounded by a constant C' and is non-convex for 6 with monotonically non-increasing

step sizes o < %, then Egen < G + 20D —JLOQ|/IQD? + T Ergraa(l + Q:1/192),

inversely proportional to |2, | generally o< |€2,.|
where J' is a finite number that depends on the training property at the several beginning iterations.

» Canonical point optimization (Q2,, = 0) and globally sampling points (2, = Q) are fixed special cases.

RoPINN can adaptively balance optimization and generalization during training.

Intuitive Understanding

Point optimization: calculate gradient on the

x+ Q. fixed collocation point in all iterations

Ta, A

6 £(u‘9t'*) —(Xt+1V9[’(u6t+1,X) > ...
‘ 0t+2

Ot+1
Q

RoOPINN: Approximate the region gradient by accumulating gradients from multiple iterations

Experiments

. . . Table 4: Details of datasets in PINNacle [12] (16 different PDEs included in our experiments),
Table 1 y Summary Of benChmarkS° Dimension means the including the dimension of inputs, highest order of PDEs, number of train/test points and concrete

1 1 1 1 1 1 1 equations. Here we only present the simplified PDE formalizations for intuitive understanding. More
lnplu Space and Derivative is the hlghCSt derivative order. detailed descriptions of PDE type and coefficient meanings can be found in their paper [12].

. . . PDE Dimension Order Ngwn N K t
Benchmark Dimension Derivative Property TR T e =7 quations
Buges 14C | ID+Time 2 16384 12288 P
. . . 2d-C | 2D+Time 2 98308 82690 o =
1D-Reaction 1D+Time 1 (e.g. &%) Failure modes [24]
. % 24-C 2D 2 12288 10240 —~Au=0
1D-Wave ID+Time 2 (e.g. g—m’;) / Poisson 24-CG | 2D 2 12288 10240 —Au+ ku = f(@,)

- . N . 3d-CG 3D 2 49152 40960 —piAu+ kiu= f(z,y,2),i = 1,2
Convection ID+Time 1 (e.g. 5%) i Failure modes [24] sams | 2D 5 10288 10329 —V(a(z)Ve) = f(z,5)
PINNacle [12] | ID~5D+Time 1~2 (e.g. g—m%) 16 different tasks 2d-VC | 2D+Time 2 65536 49189 ou _ Y (a(z)Vu) = f(z,t)

Heat 2d-MS | 2D+Time 2 65536 49189 5t — GoomyrUse — Zryy =0
2d-CG | 2D+Time 2 65536 49152 e —Au=0
10 - 10 — 7 24-C 2D 2 14337 12378 § oA B
08 § g NS 24 2D 2 14055 12007 VUt VP-pAu=0,V-u=0
°? \ - Wave 14:C | ID+Time 2 12288 10329 Wit — 4o = 0
06 oo \ 0.00 2d-CG | 2D+Time 2 49170 42194 [V2 -0 3%25] u(z,t) =0
0.4 \ -0.25 = — — uwv?
03 \ oso Chaotic ~ GS | 2D+Time 2 65536 61780 w =e1hu +5(1 —u) —uv
0.2 \ vy = e2Av — dv + uv
-0.75
- o —TN High- PNd 5D 2 49152 67241 —Au="T"3" sin(Tz;)
(a) 1D-Reaction (b) 1D-Wave (c) Convection dim HNd | 5D+Time 2 65537 49152 9% — kAu+ f(x,1)

» Five base models: PINN, FLS, QRes, PINNsFormer, KAN

» 19 different PDE solving tasks: 1D-Reaction, 1D-Wave, Convection and PINNacle

Main Results

1D-Reaction 1D-Wave Convection PINNacle (16 tasks)
Base Model Objective | ™ \AE tMSE Loss rMAE rMSE Loss rMAE tMSE tMAE rMSE
Vanilla 2.0e-1 0.982 0.981 1.9e-2 0.326 0.335 1.6e-2 0.778 0.840 - =
gPINN 2.0e-1 0.978 0.978 2.8e-2 0.399 0.399 3.1e-2 0.890 0.935 18.8% 18.8%
PINN [36] VPINN 2.3e-1 0.985 0.982 7.3e-3 0.162 0.173 1.1e-2 0.663 0.743 25.0% 25.0%
RoPINN 4.7e-5 0.056 0.095 1.5¢-3 0.063 0.064 1.0e-2 0.635 0.720 93.8% 100.0%
Promotion 99% 94% 90% 92% 80% 80% 25% 18% 14% °~-°7° oo
Vanilla 2.0e-1 0.979 0.977 9.8¢e-2 0.523 0.515 4.2e-2 0.925 0.959 - =
gPINN 2.1e-2 0.984 0.984 1.3e-1 0.785 0.781 1.6e-1 1.111 1.222 12.5% 12.5%
QRes [3] vPINN 2.2e-2 0.999 1.000 1.0e-1 0.709 0.721 5.5e-2 0.941 0.966 12.5% 12.5%
ROPINN 9.0e-6 0.007 0.013 1.7e-2 0.309 0.321 1.2e-2 0.819 0.870 o ., ¢ 10
Promotion 99% 99% 99% 83% 41% 38% 71% 11% 9% S el
Vanilla 2.0e-1 0.984 0.985 3.6e-3 0.102 0.119 1.2e-2 0.674 0.771 - =
gPINN 2.0e-1 0.978 0.979 9.2¢-2 0.500 0.489 3.8e-1 0.913 0.949 12.5% 18.8%
FLS [50] vPINN 2.1e-1 1.000 0.994 2.1e-3 0.069 0.069 1.1e-2 0.688 0.765 25.0% 18.8%
ROPINN 2.2e-5 0.022 0.039 1.5e-4 0.016 0.017 9.6e-4 0.173 0.197 o 1, oo g
Promotion 99% 98% 96% 96% 84% 86% 99% 14% 74% ° °7° =7
Vanilla 3.0e-6 0.015 0.030 1.4e-2 0.270 0.283 3.7e-5 0.023 0.027 - -
PINNs- gPINN 1.5e-6 0.009 0.018 OOM OOM OOM 3.7e-2 0.914 0.950 0.0% 0.0%
Former [58] VPINN 1.6e-4 0.065 0.124 4.5¢-2 0.411 0.400 5.1e-5 0.016 0.022 0.0% 0.0%
ROPINN 1.0e-6 0.007 0.017 6.5e-3 0.165 0.172 1.2e-5 0.005 0.006 ;00 000 100%
Promotion 66% 53% 43% 54% 39% 39% 68% 718% 718% 0o °
Vanilla 7.3e-5 0.031 0.061 9.2e-2 0.499 0.489 5.8e-2 0.922 0.954 - .
gPINN 2.9e-4 0.030 0.061 2.6e-1 1.131 1.110 1.2e-1 1.006 1.041 313% 31.3%
KAN [28] VPINN 2.1e-1 0.998 0.996 9.0e-2 0.498 0.487 2.5e-2 0.853 0.853 43.8% 43.8%
ROPINN 4.9¢-5 0.026 0.051 9.6e-3 0.177 0.191 2.2e-2 0.805 0.801 0 0, g3 g0
Promotion 33% 16% 16% 89% 65% 61% 62% 13% 16% ° 070

» Two typical baselines:
gPINN (high-order regularization)

VPINN (variational formalization)

v RoPINN consistently boost all five
PINN base models in all 19 PDEs.

v" ROPINN helps mitigate the “PINN

failure modes” (see results of 1D-

Reaction and Convection).

Main Results

Table 3: Adding RoPINN to other strategies based on PINN.
Time is for every 10 training iterations on 1D-Reaction.

Method rMSE |1D-Reaction 1D-Wave Convection Time (s)

PINN [36] 0.981 0.335 0.840 18.47 Other two PINN training strategies:
+gPINN [55] 0.978 0.399 0.935 37.91 9 9)
+RoPINN 0.095 0.064 0.720 20.04

+NTK [47] 0.098 0.149 0.798 27.99 > RAR (data-sampling)
+NTK+RoPINN 0.052 0.023 0.693 29.96

+RAR [51] 0.981 0.126 0.771 19.71

+RAR+RoPINN 0.080 0.030 0.695 20.89

RoPINN can be integrated seamlessly with other strategies without extra gradient

calculation, which verifies its orthogonal contribution and favorable efficiency.

Algorithm Analysis: Region Size

H H r . . .
(a) Trust Region Size log(;t) (b) Training Loss £ in Eq. (2) (c) rMSE
1.0 &
-3.0 1 \//./\/._v__\/_,—\ 020 e T
-3.5 1 0.8 1
—4.0 0.15
=~ w/0o RoPINN 0.6 - ~w/o RoPINN
—4.5 1 = |nital Size r=1e-6 2 —— |nital Size r=1e-6
- |nital Size r=1e-5 - |nital Size r=1e-5
—5.04 0.10 e oer= panszer=
- |nital Size r=1e-4 — |nital Size r=1e-4
= |nital Size r=1e-3 0.4 1 - |nital Size r=1e-3
_5.5 .
0.05
—6.01 —— |nital Size r=1e-6 0.2 4
- |nital Size r=1e-5
=6.51 — |Inital Size r=1e-4 L
— Inital Size r=1e-3 0.00 4 L "
_70 A T T T T T T L § T T T T T 0'0 B T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Training Iterations Training Iterations Training Iterations

Figure 2: Optimization of canonical PINN [36] on the 1D-Reaction under different region sizes.

v Adaptively find the “balance point”: Even though we initialize the region size as distinct values, RoPINN

will progressively adjust the trust region size to similar values during training.
v Affect convergence: If r is initialized as a value closer to the balance point, the training will converge

faster. Too large a region size will decrease the convergence speed due to the optimization noise.

Algorithm Analysis:

_25 B

_30 .

_35 B

_40 B

-4.5 4

(a) Trust Region Size log(al)
t

- Sample 1 Point
- Sample 3 Points
- Sample 5 Points

(') 260 460 660 860
Training lterations

1000

Sampling Points

(b) Training Loss £ in Eq. (2) (c) rMSE
1.0
0.20 [\
0.8
0.15
=~ w/0o RoPINN 0.6 1 =~ w/0 RoPINN
- Sample 1 Point - Sample 1 Point
0.10 - Sample 3 Points - Sample 3 Points
- Sample 5 Points 041 - Sample 5 Points
0.05 A
k 0.2 1
0.00 A l‘ ™~
. : : : : T 0.0+ : ; . ;
0 200 400 600 800 1000 400 600 800 1000

Training Iterations

Training Iterations

Figure 3: Optimization of canonical PINN [36] on the 1D-Reaction under different sample points.

Sampling more points in each region will bring a lower gradient estimation error,

which will lead to larger region size, better convergence and final performance.

Algorithm Analysis: Efficiency

0.10

0.09
0.08 1
0.07 -
0.06 1
0.05 1
0.04 -
0.03 1

rMSE

0.02

(a) PINN+RoPINN in 1D Reaction under various sample points

1 Point (Our default setting) GPU Memory

3 Points

5GB 10GB 15GB

5 Points

13 Points

9 Points 30 Points

7 Points
11 Points

25 50 75 100 125 150 175 200

Running Time per 100 iterations (s)

rMSE

0.08

0.07 1
0.06 -
0.051
0.04 -
0.031
0.02 1

0.01

(b) PINN+RoPINN in 1D Wave under various sample points

GPU Memory
1 Point (Our default setting)
5 Points
3 Points 10GB 20GB 30GB
7Points 9 Points 13 Points 30 Points
OOM
11 Points
50 100 150 200 250 300

Running Time per 100 iterations (s)

350

Figure 4: Efficiency and model performance w.r.t. number of samples. Note that the default setting
of RoPINN is just sampling one point, which will not bring extra gradient calculation costs.

The benefits brought by more sampling points will saturate around 10 points.

Our default setting is just sampling 1 point, which can keep the similar efficiency as point optimization.

Algorithm Analysis: Ablations

1.4 E Vanilla 14 E Vanilla 1.4 E Vanilla
1.2 B +RoPINN w/o Trust Region Calibration 1.2 B +RoPINN w/o Trust Region Calibration 12 B +RoPINN w/o Trust Region Calibration
+RoOPINN +ROPINN +RoPINN

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 I 0.2

0.0 e 0.0

u 0.0 :
PINN QRes FLS PINNsFormer KAN PINN QRes FLS PINNsFormer KAN PINN QRes FLS PINNsFormer KAN
(a) 1D-Reaction (b) 1D-Wave (c) Convection

Figure 5: Ablation study of ROPINN on different PDEs and diverse base models. rMSE is recorded.

Without trust region calibration, ROPINN (only region sampling) can already boost the performance.

Trust region calibration can make the performance better and more stable.

Algorithm Analysis: Loss Landscape

Convection Error Map Loss Landscape Error Map Loss Landscape
1.00 1.00 1.00

0.75 0.75 « 0.75

1750
0.50 0.50 1500 0.50 e
1250 4000

1000 0.25 3000
750 2000

0.25 0.25

Il

500 0.00
250 1000
-0.25 \ -0.25 ‘ -.\\ -0.25 ?
-05 ¢ \ P
ou ou - RIS oo Ellge”vgéforlo's Lo -10 < e =100 Eige’“’:c'?orlo's 10 -0 <
3t F°05;=0 (a) Vanilla PINN (b) PINN+RoPINN

Figure 6: Loss landscape of RoPINN and vanilla PINNs on the Convection equation. Error Map
refers to the distance between model prediction and the accurate solution, i.e. (ug — u).

“PINN failure modes” is not caused by limited model capacity but by hard-to-optimize loss landscape.

Empowered by RoPINN, the loss landscape of PINN is significantly smoothed.

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks.
Neural Information Processing Systems, 2021.

More Showcases

1D-Wave 1D-Reaction

Convection

1]}

Ground Truth
1.0
0.8
0.6
0.4
0.2

1.0
0.5
0.0
-0.5
-1.0

1.00

0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

PINN Error

-0.3
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

PINN+RoPINN Error

—_—
_—

-0.2

-0.3
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

PINNsFormer Error
0.15

0.10
0.05
0.00
-0.05

-0.10

-0.3
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20

PINNsFormer+RoPINN Error

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.3
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20

Figure 9: Showcases of ROPINN on the first three datasets based on PINN and PINNsFormer.

Open Source

Code

© lIssues

O thuml / RoPINN

19 Pullrequests (® Actions [Projects (@ Security

i ROPINN pubic

¥ main ~ ¥ 1Branch © Tags

i/ wuhaixu2016 add pinnsformer

»

W models

M pic

scripts

.gitignore
1d_reaction_point_optimization.py
1d_reaction_region_optimization.py
1d_wave_point_optimization.py

1d_wave_region_optimization.py

README.md
convection_point_optimization.py
convection_region_optimization.py
model_dict.py

requirements.txt

]
0
0
0
0
0
[LICENSE
0
0
0
0
0
0

util.py

[0 README &[8 MIT license

|~ Insights 83 Settings

Q Go to file

add pinnsformer
init

add pinnsformer
Initial commit
add pinnsformer
add pinnsformer
add pinnsformer
add pinnsformer
Initial commit
Update README.md
add pinnsformer
add pinnsformer
add pinnsformer
init

init

P EditPins v

t Add file ~ <> Code ~

fef4811 - 2 days ago @ 8 Commits

2 days ago
5 days ago
2 days ago
2 weeks ago
2 days ago
2 days ago
2 days ago
2 days ago
2 weeks ago
3 days ago
2 days ago
2 days ago
2 days ago
5 days ago

5 days ago

7 =

® Watch 3 ~

Q Type (/) to search

% Fork 0 - Starred 7 -

About]

About Code release for “RoPINN: Region
Optimized Physics-Informed Neural
Networks"” (NeurlPS 2024),
https://arxiv.org/abs/2405.14369
Readme

MIT license

Activity

Custom properties

7 stars

3 watching

€ O %[0 ¢+ & B

0 forks

Report repository

Releases

No releases published
Create a new release
Packages

No packages published
Publish your first package

Languages

® Python 98.7% Shell 1.3%

Suggested workflows
Based on your tech stack

Code is available at https://github.com/thum|/RoPINN

+- 0 n @

https://github.com/thuml/RoPINN

Thank You!

wuhx23@mails.tsinghua.edu.cn

KigXE, REEHFRIMN

