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Motivating example: online recruitment

▶ How to reduce the cost of the subsequent interview process for unsuitable candidates?

▶ Control the False Selection Rate to avoid containing too many unsuitable candidates.

▶ How to contain suitable candidates with different backgrounds to enrich the diversity?

▶ Control the Similarity among candidates at a desired level.
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General constrained online sample selection

Problem statement:

▶ A sequence of i.i.d. unlabeled data X1,X2, · · · arrives in a stream with their responses
Y1,Y2, · · · unobserved all the time.

▶ Task: to sequentially select samples whose unobserved responses Yt’s are in the specified
target region A until a specific stopping time T.

▶ A = {1} or {0} for classification. In recruitment, A = {the class of suitable candidate}.

▶ A = [a, b] or [b,+∞) for regression.

▶ At each time t, we make decision δt = 0/1 on whether to select Xt until stopping.

▶ We call the selection δt = 1 is correct if θt = I{Yt ∈ A} = 1.

▶ Our goal: design a real-time selection procedure that can control various constraints at the
user-specified stopping time T.
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Challenges

Natural idea:

▶ µ(x) := Y | X = x: regression or classification model with (X,Y)

▶ Estimate µ(x) on some offline labelled data

▶ Obtain predicated value Ŷj = µ̂(Xj) for Xj

▶ Use I{Ŷj ∈ A} to approximate θj = I{Yj ∈ A}

Challenges:

{Ŷj ∈ A} ̸= {Yj ∈ A}

▶ How to quantify the prediction uncertainty to make the subsequent decisions reliable?

▶ How to make the selected subset more informative/representative?
▶ How to make sample selection in the online setting?
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Our solutions: II-COS

Individual and Interactive Constrained Online Selection:

▶ (1) Quantify the uncertainty of response predictions using predictive inference;

▶ (2) Focus on two general types of constraints;

▶ (3) Address individual and interactive constraints at each time.

Focus on two general types of constraints

1 Individual constraints C1(δt):

each selected sample has a cost associated with θj and Xj.

2 Interactive constraints C2(δt):

capture interactive influence among correctly selected samples.
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Individual and interactive constraints

▶ Individual constraints

C1(δ
t) = E

[∑
i≤t{(1− θi)G0(Xi) + θiG1(Xi)}δi

(
∑

i≤t δi) ∨ 1

]
≤ α. (2.1)

▶ E.g.: If G0(X) = 1 and G1(X) = 0, the individual constraint is false selection rate (FSR)

C1(δ
t
) = FSR(δ

t
) = E

[∑
i≤t(1 − θi)δi

(
∑

i≤t δi) ∨ 1

]
.

▶ Interactive constraints

C2(δ
t) =

E

[ ∑∑
1≤i<j≤t

g(Xi,Xj)θiθjδiδj

]

E

[ ∑∑
1≤i<j≤t

θiθjδiδj

] ≤ K. (2.2)

Involves choosing more preferable samples relying on the interaction among correctly se-
lected samples.
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Related works

Online multiple testing (online FDR control)

▶ Generalized α-investing framework: Foster and Stine [2008]; Aharoni and Rosset [2014];
LOND [Javanmard and Montanari, 2015], SAFFRON [Ramdas et al., 2018], ADDIS [Tian and Ramdas, 2019].

▶ Structure-adaptive sequential testing: SAST [Gang et al., 2023].

Conformal/predictive inference

▶ Conformal inference: Vovk et al. [2005], Romano et al. [2019], Chernozhukov et al. [2021],
Vovk [2015], Barber et al. [2021].

▶ Conformal p-values: Bates et al. [2023]; Jin and Candès [2023].

▶ Prediction-assisted subsampling: Wu et al. [2023].
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Goal and formulation

Our goal for online selection
To select samples of interest by a decision rule δT controlling both the individual and interactive
constraints at any time t until reaching the stopping time T, i.e.,

C1(δ
t) ≤ α and C2(δ

t) ≤ K.

▶ Wt = µ̂(Xt) is a predicted value of Yt and assume that µ̂(·) is bijection almost surely.

▶ θt = I(Yt ∈ A) is Bernoulli(q) distributed with q = Pr(Yt ∈ A).

▶ Wt can be viewed as generated from two-group model

Wt | θt ∼ (1− θt)f0 + θtf1,

where f0 and f1 denote pdf of Wt | θt = 0 and Wt | θt = 1.

▶ With the two-group model, we have

E[θt | Xt] = 1− Pr(θt = 0 | Wt) = 1−
(1− q)f0(Wt)

f(Wt)
:= 1− Lt

where f = (1− π)f0 + πf1. So θt is equivalent to 1− Lt in the sense of taking expectation.
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Oracle II-COS procedure

▶ Individual constraint C1(δt) can be exactly satisfied if

Vt
Rt

:=

∑
i≤t{LiG0(Xi) + (1− Li)G1(Xi)}δi

(
∑

i≤t δi) ∨ 1
≤ α

holds, where Vt is the expected cost of summation until time t and Rt is the number of
selection.

▶ Accordingly, interactive constraint C2(δt) ≤ K can be achieved if

TSt
NSt

:=

∑∑
1≤i<j≤t

g(Xi,Xj)(1− Li)(1− Lj)δiδj∑∑
1≤i<j≤t

(1− Li)(1− Lj)δiδj
≤ K,

where the expected total mutual effects conditional on {Xi}i≤t and the expected number
are denoted as TSt and NSt, respectively.
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Oracle II-COS procedure

Oracle II-COS (Individual and Interactive Constrained Online Selection)
If Lt is known, when t comes before the first selection (i.e, Rt−1 = 0), the decision rule is δt = 1
if

Vt−1 + LtG0(Xt) + (1− Lt)G1(Xt)

Rt−1 + 1
≤ α, (2.3)

holds; otherwise, δt = 0 which means Xt is not selected. When Xt arrives with Rt−1 ≥ 1, then
δt = 1 if (2.3) and

TSt−1 +

[ ∑
i≤t−1

g(Xi,Xt)(1− Li)δi

]
(1− Lt)

NSt−1 +

[ ∑
i≤t−1

(1− Li)δi

]
(1− Lt)

≤ K (2.4)

hold simultaneously; otherwise, δt = 0.

▶ Assume Lt values are known. Then the oracle II-COS selection rule controls both constraints
at any time t, i.e., C1(δt) ≤ α and C2(δt) ≤ K.

▶ In practice, since Lt is unknown, we adopt a data-splitting strategy to estimate Lt and
propose a data-driven II-COS procedure.
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Workflow of data-driven II-COS procedure
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Individual and interactive constraints guarantee

Theorem
Suppose Assumptions 1-2 hold and take the bandwidths for estimating f and f0 in the order of
n−1/(2β+1). Let Tm = inf{t :

∑t
i=1 δi = m} for m > 2. Then for any given time t ≥ Tm, the

data-driven II-COS procedure satisfies

▶ (Bound for individual constraint) Denote ∆n = Dn
−β

2β+1
√

log n and D is a constant de-
pending on M, ℓ, cβ , β, π, cG and K(·), then

C1(δ
t) ≤ α+∆n.

▶ (Bound for interactive constraint) Assume there exists a constant α′ ∈ (0, 1) such that∑
i≤t L̂iδi/(1 ∨ Rt) ≤ α′, then

C2(δ
t) ≤ K +

(K + cg)∆n

0.5− mα′
m−1

−∆n
.

The II-COS procedure controls the two constraints asymptotically at any t ≤ T:

lim
n→∞

C1(δ
t) ≤ α and lim

n→∞
C2(δ

t) ≤ K.
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Basic simulation setting

Two constraints of interest:

▶ Individual constraint: False selection rate (FSR), computed by the average value of FSP
among 500 replications.

FSP(t) =
∑t

i=1 δi(1− θi)

(
∑t

i=1 δi) ∨ 1
.

▶ Interactive constraint: Empirical similarity (ES), the average of ES0

ES0(t) =

∑∑
1≤i<j≤t

g(Xi,Xj)θiθjδiδj∑∑
1≤i<j≤t

θiθjδiδj
,

where g is taken as the RBF kernel.

Stopping rule:

▶ Stop when selecting m = 100 samples, Tm = inft{t :
∑t

i=1 δi = m}.
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Basic simulation setting

Benchmarks:

▶ Compare the II-COS procedure with four benchmarks from online multiple testing.

▶ SAST: implemented with the same lFDR estimator L̂t

▶ LOND, SAFFARON, ADDIS: implemented with the conformal p-values suggested by Bates
et al. [2023]

Model setting:

▶ A classification model:

▶ X | Y = 0 ∼ N4 (µ1, I4) and X | Y = 1 ∼ N4 (µ2, I4)

▶ µ1 = (5, 0, 0, 0)⊤,µ2 = (0, 0,−3,−2)⊤ and Pr(Y = 1) = 0.2.

▶ The target region is A = {1}.

▶ Random forest with defaulted parameters is trained to give prediction.
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Simulation: results in real time
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图: The real-time plot of FSR and ES for II-COS, SAST, LOND, SAFFRON and ADDIS. The black dashed
lines denote the FSR level α = 0.1 and the ES level K = 0.045. We use training data size ntr = 1, 000 and
calibration data size ncal = 4, 000.
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Discussion

Prediction-assisted Inference

Summary:

▶ Predictive inference plays a central role to guarantee the validity of the decision-making.

▶ A real-time selection rule under general constraints to extract informative samples from
target space. (II-COS)

Discussion:

▶ More general interactive constraints: uniform/space-filling design criterion.

▶ Incorporation of auxiliary information: neighbor information or the feedback information.

▶ More general requirements: deterministic sample selection, obtaining a better training
model.
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Thank you!

See more details and experiments results in our paper:

▶ Real-Time Selection Under General Constraints via Predictive Inference, NeurIPS, 2024.
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