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Implicit Bias of Mirror Flow on Separable Data

Setup: logistic regression

min
β

L(β) =
n

∑
i=1

ln (1 + e−yi⟨β,xi⟩)

Assumption: linearly separable data  the loss is minimised at infinity
→

    for   lim
s→∞

L(sβ*) = 0 β* ∈ S

set of vectors defining separating hyperplanes

For a given algorithm, what is the directional limit  of the iterates  ?lim
t→∞

βt

∥βt∥
βt

Many possible solutions in : which one is preferred by the method ? 


Is it one with good generalization properties ? (implicit regularization)


S

The method: mirror flow

·βt = − ∇2ϕ(βt)−1 ∇L(βt)

strictly convex potential

Motivation: reparametrized problems . Under some conditions:β = F(θ)

Gradient flow on   Mirror flow on θ ↦ L(F(θ)) ⟺ β ↦ L(β)

Example:   “diagonal neural networks”β = F(u, v) = u ⊙ v

ϕ(β) =
d

∑
i=1

(βi arcsinh(βi) − β2
i + 1)

Main result
Theorem: the mirror flow iterates  converge in direction towards  satisfying 
the -max margin problem

βt β̄
ϕ∞

   β̄ ∝ argmin{ϕ∞(β*) : β* ∈ S}
set of separating hyperplanes

ϕ∞ ∝ ∥ ⋅ ∥1

Implicit bias towards sparsity in diagonal neural 
networks 


(known result, more general proof)


Horizon function

horizon function of mirror potential ϕ

Application: hyperbolic potential

How to define the geometry of  “at infinity” ?
ϕ

Sc = {β : ϕ(β) ≤ c} S̄c = Sc/ max
β∈Sc

∥β∥ S∞ = lim
c→∞

S̄c

We say that  admits a horizon if  existsϕ lim
c→∞

S̄c

Horizon function:   ϕ∞(β) = inf{r > 0 :
β
r

∈ S∞}
Minkowski gauge of :S∞

norm-like function whose level sets are ∝ S∞

Theorem: if  is tame, it admits a horizon. ϕ

e.g. polynomial, semialgebraic, 
subanalytic, log-exp…

Key property: if  with ,


  with 

∥βt∥ → ∞
βt

∥βt∥
→ β̄

∇ϕ(βt)
∥∇ϕ(βt)∥

→ λ ḡ ḡ ∈ ∂ϕ∞(β̄)

 is possibly nonsmoothϕ∞


