Limits of Transtormer Language Models
on Learning to Compose Algorithms
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We investigate how well transtormer language models
can learn algorithmic compositional tasks
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We design new tasks based on pointer executionll 2! to
benchmark compositional learning
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[1] Abnar et al. Adaptivity and Modularity for Efficient Generalization Over Task Complexity. ArXiv, 2023
[2] Zhang et al. Pointer value retrieval: A new benchmark for understanding the limits of neural network generalization. ArXiv, 2021.



We outline four possible hypotheses to characterise more
formally the sample efficiency of the learning process

7—[ 1 constant number of samples

7—[2 fewer samples than those required to learn the most difficult sub-task

HS fewer samples than the sum of samples needed to learn every sub-task

7—[4 more samples than H3



Transtormer language models require an exponential number
of samples to learn the composition of primitives (H4)
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Transtormer language models require an exponential number
of samples to learn the composition of primitives (H4)
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Transtormer language models require an exponential number
of samples to learn the composition of primitives (H4)
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We observe the same trend across a wide range of

compositional algorithmic datasets
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Pre-trained LLMs struggle on these tasks as well

GPT-4 accuracy on PEN
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Increasing prompt engineering complexity

Gemini-Pro accuracy on PEN
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Message: Transformer LMs are inefficient learners of compositions of tasks, requiring
more training samples than the sum of those required to learn each task individually.

Paper https://arxiv.org/abs/2402.05785

Code https://github.com/IBM/limitations-lm-algorithmic-compositional-learning
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