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Motivation

e Diffusion processes are widespread in many natural processes.

e Typically characterized by three terms: a drift term due to a potential
field, the interaction with other particles, and a stochastic term.

e Existing methods either rely on having access to particles trajectories
(often not possible) or are data and compute inefficient.

The JKO scheme
The Fokker-Planck equation,
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describes the time evolution of the distribution p of a set of particles
undergoing drift and diffusion,

dX(t) = =V V(X(t))dt + v/28dW(t),
where X(t) is the state of the particle, V/(x) the driving potential, and

W (t) the Wiener process. It turns out the resulting particles trajectory
can be described via the JKO scheme:
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where J is an energy functional and 7 > 0 is the time discretization.
A general energy functional:
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Intuition in R¢

Consider the analog of (1) in the R¢
1
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We replace the above by its first-order optimality condition
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Given a dataset (xg, x1, . .., x7), we find J as:
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Our work enables an analogous result in the Wasserstein space.

First-order optimality conditions for the JKO
scheme

Our analysis suggest that given a populations dataset (g, ft1, ..., ft7)
we seek the parameters 6 minimizing

T—1
Z/ VVQ(XH_l) + VU@(Xt—l—l o Xt,“+1)d:ut—|—1(xt/“+1)
0 JRIXRA Rd

2

V/Ot+1(xt+1) 1
| — d : (2
,Ot+1(Xt+1) 7_(Xt+1 Xt) %(Xt Xt+1) ( )

where g, V1, ..., yT are optimal transport plans between p; and pi; 1.
® ; can be computed once, before-hand, and efficiently;

e when Jy is a neural network, we minimize (2) via gradient descent;
e when Jy is parametrized linearly, we have a closed-form solution.
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Training at lightspeed
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Different potential V/(x) driving the diffusion.
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Level curves of different potentials (green: real; blue: estimated).
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Scaling to high-dimensions

e Sub-linear error growth.
e Negligible increase in training time.

Styblinski-Tang

Holder table
< 10,000 1 1.4
R 1.2
T 5,000 0.6 82
S 2,500 0.4 04
= 1,000 00 0.2
Flowers , Oakley-Ohagan

= .10~

=~ 10,000 0.3
o 7,500 10 0.25
% 5,000 : 0.2
S 2,500 0.15
— 1,000 0.1

10 20 30 40 50

Dimension d

10 20 30 40 50

Dimension d

Learning general energy terms

Additional error sources:

e Sampling error (internal energy)
e Estimation of the densities
Nonetheless: our method (JKOnet™, jxopet*
non-linear and linearly parametrized)
recovers all the energy terms.

Open question: observability of the
different energy terms?
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Learning single-cell diffusion dynamics

e Intuition: cellular evolution minimizes (some) energy;

e We can account for unobserved variables via time-varying energies;

e State-of-the-art accuracy at a fraction

of the computational cost of the other methods: less than minute vs hours.
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Cool stuff worth looking at next
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e Fast distillation of diffusion models for one- or
few-steps generation;

e Observability of the different energy terms;

e Can optimality conditions in P(IR9) be helpful
in your work? Reach out!
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