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Data Privacy is Important in Neural Network Training

Deep neural networks are widely applied across domains such as healthcare, finance, and law enforcement.

Financial
Medical ,_IEL Hospitals
Images ooo O i
, 0 O utsource training 1-%">
ﬁ — \\l{/[/».*\\\"‘f“\ 7
d : to cloud servers .\770:'/“'0@4
% CA ﬁ:’}%:? C g}”‘:';{“)‘:’u
AXIORAER ~ SARIOXX
' AN RARY o
N LR
W N — 0\./'
N Governments Return trained model
Banks
Confidential datasets Institutions Untrusted Server

Direct data sharing
leads to privacy breaches

HEPrune: Fast Private Training of Deep Neural Networks With Encrypted Data Pruning



Private Training is Secure but Slow

FHE-based private training offers strong data privacy guarat > Large number of ciphertexts
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Our Motivation

Can we reduce the number of ciphertexts, i.e., encrypted data samples, during private training
without compromising accuracy?
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Problem Statement

The server choose the most salient subset of samples D' from the encrypted dataset D.

Encrypted

Data Pruning D=

» Security. The server should not learn the training data or model weights during pruning.
» Accuracy. The chosen subset should have a close accuracy compared to full dataset.

» Efficiency. Encrypted data pruning should speedup private training.
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Naive Encrypted Data Pruning

Directly applying data pruning methods in the plaintext to private training is impractical.
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HEPrune Framework

HEPrune enables encrypted data pruning with HE-friendly score, client-aided masking and ciphertext-wise pruning.
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HE-friendly Importance Score

The HE-friendly importance score (HEFS) is easy to compute in the encrypted state.

Computing HEFS for one ciphertext takes less than 2 seconds.
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Client-aided Masking

Client-aided masking avoids expensive homomorphic sorting without leaking data privacy.
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Security.
The training data and model weights remain encrypted.

The privacy of data and model is protected.

Efficiency.

» Runtime

Generating the pruning mask needs only O(N) time on
the client side (15 ms for the CIFAR-10 dataset).

» Communication
Before sending the scores, the server can set the score

to a low multiplicative level to improve communication.



Ciphertext-wise Pruning

Ciphertext-wise pruning (CWP) effectively removes the sparse ciphertexts and reduces the number
of ciphertexts in private training.
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Encrypted Data Pruning on Different Datasets

We set the pruning ratio as p = 0.9 (only 10% of the dataset is kept) on different datasets.
Encrypted data pruning speedup the training time by around 6.6 times.

Method MNIST CIFAR-10 Face Mask Detection DermaMNIST  SNIPS
Unencrypted ACC(%) 95.69i0,02 96.62i0,02 95.46:}:0,06 75.91:}:0,11 94.43i0,05
HETAL Acc(%) | 96.27+0.02 96.57+0.04 95.4640.05 76.06+0.18 95+0.08
Runtime(h) | 276.75 293.3 32.88 101.55 113.7
Ours ACC(%) 95.54;&0,05 96.31:&0,06 95.21:}:0,06 75.86:}:0,15 95-14:|:0.08
Runtime(h) 41.89 44.76 5.02 15.5 17.36

The proposed methods effectively improves the performance over the baselines.

Method Accuracy(%) | Runtime(h) Speedup | Communication(MB)
Full Data(HETAL) 96.57+0.04 293.3 x 1 18.1
Prune Baseline 95.9810.12 488.91 x0.6 18.1
+Client Aided 96.1610.07 196.91 x1.49 22
+HEFS 96.314+0.06 105.57 X2.78 22
+Ciphertext-wise Pruning 96.3140.06 44.76 X6.5D 22
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Different Pruning Ratios and Training from Scratch

We experiment with different pruning ratio on the CIFAR-10 and MNIST dataset. Training with 40%~70%
of the dataset has even high accuracy than training with the full dataset.
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The encrypted data pruning can also be applied to the training-from-scratch setting.
Method 1% 5% 10% 20% 40% 50% 60% 70% 80% 90%
Acc Acc(%) | 93.23 97.12 97.39 98.38 98.52 98.55 985 98.48 9845 98.45
' AAcc. |-526 -1.37 -1.1 -0.11 +0.03 +0.06 +0.01 -0.01 -0.04 -0.04
Runtime(h) Time(h) | 32.25 110.61 208.56 404.46 796.26 992.16 1188.06 1383.94 1579.88 1775.72

speedup|60.8x 17.2x 9.4x 4.8x 2.5x 19x 1.7x 14x  1.2x  1.1x
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Thank you!
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