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Motivation
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Pretrained and

quantized models

Use cases:
* Audio: keyword spotting
* Image: face detector

On-device models need:

 Accuracy to local data

* Model personalization and
customization

* Preservation of privacy
without re-deployment

Challenges

The pretrained models may not
be sensitive to users’ local data.
In addition, model training is
prohibitive for edge devices with
power and memory constraints.
Back-propagation support is
limited on the edge.
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Solution

Locally adapt the model for
continuous learning and model
personalization. Training with
forward gradient through two
forward calls to avoid large
memory footprint from
backpropagation.

Al model

Backward pass with gradient computation = “backpropagation”



Methodology
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Quantized Weights Update

Model adaptation through fixed-point forward-forward (FF) gradient
learning. Forward gradients are estimated through forward calls only,
without the need of backpropagation.

Training without back-propagation

Definition: Given a machine learning function f(w): R™ — R and model parameters
w € R", with perturbation vector z € R", the forward gradient g: R — R" is
defined as a directional derivative of f at point w in direction z :

gw) = (Vf(w) - 2)z (1)

Definition (SPSA): Given a model f with parameters w € R"™ and a loss function
L(w), SPSA estimates the gradient as:

Liw+e¢ez)—L(w—¢2) ; 2)
2¢e

where z ~N (0, I,) is a weighted vector over all parameter dimensions, randomly
sampled from normal distribution with zero-mean and standard deviation.

gw) =

Definition (Sign-m-SPSA):

m

glw) = %Z sign(L(w + €z) — L(w — £2)) z; (3)

i=1

Definition (Sign-m-SPSA-SGD): With §(w) as the estimated forward gradient, an
optimizer such as SGD with learning rate 17 can be used to update model parameters:

Weyg = we — 1 G(w) (4)



Quantized Training
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1. weights perturbation

Quantized Perturbation: the quantized weights perturbation can be
defined and calculated as:

wtrez=w-1.0+Lez
~ Apwg - Al EAyeg - Azzg

— t
) re—quan

= ApAs(wg -1 £ €, 24 Ay - Wy (5)

where 1, = Lk—o], represents for the quantized value of floating point
1.0 with A, as its scaling factor. Similarly, ¢, = [ 2~ 1, represents for the
quantized value of € with A, as its scaling factor.



Quantized Training

subtract

updated weights

Quantized forward gradients
and quantized weight update

Quantized Forward Gradients: the quantized forward gradient,
estimated from sign-m-SPSA can be calculated as:

X 1 T .
gr = E Z szgn(]L('w + ez.,;) — L(w — 621))%
i=1
1 T
~ — ) L - ]L - Az
2 s (L) — L) Az
=A.g, (6)

where g, represents for the quantized gradients, and it is using the
same quantization scaling factor and bit-width as perturbation vector z.

Quantized Weights Update: we can further quantize the learning rate n
to a quantized value of 1, and the change of weights can be derived in
the quantized space, with A,, as the re-quantized scaling factor.
Wip1 = W — NGy
~ Aywg — Ap1A g,

A, A,
=94 (7)

= Ay (wg — wy) 6

~ Aywg — Ay |_




QZ0O-FF enhancement

Algorithm 1 QZO-FF: Quantized Zero-order Forward Gradient Learning(quantized, fp16)
Require: quantized model parameters w, €1, loss L 1 I — R, perturbation scale €, training steps
T , batch size B, learning rate schedule {1}
1: * Given a pre-defined Zq. of perturbation z, calculate A, = Zpax/(2071 — 1) with b-bit.

* Quantize 1.0to 1, with A .
+ Get the quantization scaling factor, A i, of quantized weights of each layer.

2: fort=1,..,Tdo . .
% form-l,...Mdo e Momentum Guided Sampling
4: Sample random seed s, and batch B .
5: Generate perturbation vector z ~ N(0, I,,), and quantize the values to (A, z,), z; €1" e Sha rpness-aware Perturbation
6: wg+ — PerturbP arameters(wyg, z4, €) D>Perturb in positive direction
7 Iy — L(Wq+;B) °
8: W- — F(’ erturb)P arameters(wy, zq, —2€4) >Perturb in negative direction Spa rse U pd ate
0 Z_ — L Wq_; B . . .

10: gi +=sign(ly —1-) -z [>Quantized gradient accumulation e Kernel-wise Normalization

L wg — PerturbP arameters(wg, zq, €) P>Reset weights to original position

12: end for

13: gq = g4/M I>Quantized gradient averaging

14: for vlré Ewg do P>Update weights of each layer

15: w; = [A—Aﬂf—f gy >Re-quantization (see Append.A for fixed-point approximation)

lo: Wi = W =W/

17: end for

18: end for

19:

20: Subroutine: PerturbP arameters(wy, 74, €;)

21: for wi, € wg do

22: Wé, - Lﬂtz(wif ‘1, +¢, z,)], where e, = [e/A ;| Dper-tensor A i

23: end for /




Experimental Results: Few-shot Learning

Vision tasks: Audio tasks:

e 5 datasets e 2 datasets

* 3 network architectures * 2 network architectures
e 5-way 5-shot setting * 5-way 1-shot setting

Table 1: Vision tasks: few-shot learning accuracy (%) with Forward (FF) and Backward (BP)
gradients. The averaged accuracy over 100 testing tasks is reported. FT: full fine-tuning; LP: linear
probing; Quant: 16w8a with symmetric quantization. FF outperforms zero-shot across the board, and
achieves comparable performance (accuracy within 5%) to BP on 26 out of 30 tasks.

Backbone  Training CUB Omniglot  Cifarl00 fs  minilmageNet tieredlmageNet Table 2: Audio tasks: few-shot learning accuracy (%) with Forward (FF) and Backward (BP) gradients.
Zero-shot 63.46 92.00 60.44 3444 20.92 FF achieves comparable (accuracy within 5%) or better performance to BP on 11 out of 16 tasks.
BP, FT 85.32 99.62 82.32 8734 82.54 Backbone  Training _ ESC- 50 FSDKaggle18
Resnetl2  BP,LP 84.14 98.64 72.42 87.46 81.96 SimpleShot  ProtoNet SimpleShot  ProtoNet
FF, FT 80.58 (uray  97.44 (215 71.24 (1108 87.36 (o) 82.12 o) BP, FT 66.34 73.82 38.89 33.11
FF, LP 79.02 (512 96.62 209  70.30 (212 87.30 (016) 82.22 (026 BP,LP 72.11 71.30 36.88 32.67
FF, LP, Quant 77.42 96.08 68.54 87.00 81.64
CRNN FF, FT 67.20 (o036 64.30 1139 36.04 (239 35.52 241
Zero-shot 39.96 86.68 74.60 82.58 80.44 FF, IP 67.38 (473) 61.62 o) 37.53 cossy  34.67 (200
BP, FT 79.28 98.54 86.34 86.96 86.78 FF, LP, Quant 67.05 63.43 36.90 35.55
Resnetl8 BP, LP 78.92 96.48 84.88 87.42 84.68
FF, FT 7634 cssn 9470 o5y 82.20 a1y 87.66 ¢aro) 85.88 os0) BP, FT 68.04 75.85 38.12 46.12
FF, LP 73.64 528y 95.56 002y  82.32 (256 87.14 032 83.02 (-1.66) BP,LP 75.98 70.16 42 .86 42.64
FF, LP, Quant  70.54 95.86 74.92 85.74 81.00 AST  FFFT 7970 1165 66.98 (ssn  42.92 caso  40.50 cssn)
Zero-shot 90.60 90.96 82.28 98.78 94.30 FF, LP 76.07 (+009) 63.96 (-5.20) 42.72 o014 38.18 (446
BP, FT 93.08 99.88 90.88 98.46 96.04 FF,LP, Quant 76.13 61.86 42.90 38.10
ViT tiny BP,LP 93.90 95.78 84.42 98.40 95.32
FF, FT 93.58 (+0s50)  96.96 (.292)  88.66 (222 99.08 (+0.62) 95.50 (0.54)
FF, LP 92.26 169y 95.00 078y  84.48 (+0.06) 99.02 0.62) 95.18 -0.14)
FF, LP, Quant 92.24 95.04 84.40 99.00 95.18




Experimental Results: Cross-domain Adaptation

Classification mean accuracy and standard deviation (%)
(VIiT Tiny, VWW)

e dotaaen oo I
* Adapted dataset largely differs from pre-trained §7.47 (000

L ———
dataset 827;%9; EJ%%
* ViT tiny backbone I /5. 65 o

e Ablation studies on

48.48
. . 92.75 (+£0.20)
e Two training methods (LP, D-VPT) 87,58 (£020)

» Effectiveness of quantized FF el 882831%%%0;}?
* Gradient averaging in FF B1.26 (049

* Quantization bit-width 47.02

e Perturbation sampling O_Zem ot 20 40 _Bgofpw 80 100
* QZO-FF enhancement mFF, fp16, m=1 mFF, fp16, m=3

FF, fp16, m=3, Sharpness-aware mFF, quant, m=1

FF, quant, m=3 FF, quant, m=1, Binomial

FF, quant, m=3, Binomial mFF, 8w8a, m=3



Experimental Results: In-domain OOD Adaptation

Table 3: Accuracy (%) of model adaptation to in-domain OOD dataset with Forward (FF) and
Backward (BP) gradients. 1 LN: 1 linear layer of decoder; 3 LN: 3 linear layer of decoder. Quant:
16w8a, Sparse: 90% weights pruned. The accuracy numbers (with standard deviation) are averaged
over 5 runs.

Backbone Training

In-domain OOD Adaptation
* Adapted dataset is similar to the pre-trained

Cifar10-C (easy) Cifar10-C (median) Cifar10-C (hard)

Zero-shot ~ 82.48 74.59 62.40
dataset, but with data out of distribution (OOD) LP BP 83.75 (£ 0.67) 77.88 (£ 0.85) 70.03 (£ 1.20)
ST 1LN  FF 83.37 (£ 0.60)  77.04 (£ 0.66) 68.65 (£ 0.70)
* ViT tiny backbone FF, Sparse  83.34 (£ 0.59)  77.11 (£ 0.68) 68.63 (& 0.95)
e Ablation studies on FF, Quant  83.23 (£ 0.57) 76.73 (£ 0.75) 68.28 (£ 0.87)
e Two tra|n|ng methods (LP’ D_VPT) Zero-shot  85.83 7777 62.25
: . LP BP 86.99 (£0.41)  81.57 (£ 0.78) 74.76 (% 0.90)
* Effectiveness of quantized FF 3LN  FF 86.11 (£0.59)  79.17 (% 0.70) 67.78 (% 0.72)
* Effectiveness of sparse FF FF, Sparse  86.10 (£0.58)  79.24 (£ 0.63) 68.06 (£ 1.11)
FF, Quant  85.77 (£0.55)  78.67 (£ 0.63) 67.25 (£ 0.42)
Zero-shot  89.52 82.24 68.95
BP 91.66 (£0.50)  88.90 (£ 0.46) 84.54 (£ 0.42)
D-VPT  FF 90.58 (£ 0.53)  86.21 (£ 0.49) 78.38 (% 0.80)
FF, Sparse  90.56 (£0.48)  86.18 (£ 0.51) 78.24 (£ 0.81)
FF, Quant  90.41 (£0.49)  85.77 (£ 0.43) 77.45 (£ 0.64)
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Conclusion

e Continuously updating pre-trained models to local data on the edge is the last mile for model
adaptation and customization.

* To overcome the memory limitation of most existing low power devices, forward gradients can
be used for model fine-tuning.

* Through comprehensive experiments, we have shown that quantized forward gradient learning
with 16w8a can effectively adapt most typical model architectures (e.g., Resnet, ViT-tiny,
CRNN, AST) and scales.

* With minimum accuracy reduction, fixed-point forward gradients allows model adaptation
using the same memory footprint and operation support as inference, as opposed to
backpropagation.

* Therefore, it has the potential to enable model fine-tuning on existing edge devices with
limited memory and backpropagation support, without requiring additional hardware
adaptation.
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