Local Curvature Smoothing with Stein’s
ldentity for Efficient Score Matching

Background

Estimating the score, V,.log p(x), enables sampling via Langevin/Hamiltonian Monte
Carlo or stochastic/ordinary differential equations. To estimate the score of an unknown

distribution p(x), the score function Sy (x) is optimized via score matching as:

.1
min > Ep [|Sg (x) — Vy log p(x)||*.

Hyvarinen introduced the following as a trainable objective p;:

Jsm(0) = ExpUsn (0,20, J§4(8,%) = Tr(V,Se(x)) + IS ()|,

Problem

Computing Tr(V,Sg(x)) for high-dimensional data is computationally expensive,

making learning with J¢,, practically impossible.

Existing Methods

Sliced Score Matching (SSM) (2

SSM approximates Tr(V,Sg(x)) by the Skilling-Hutchinson trick. Finite
Difference Sliced Score Matching (FD-SSM) @1 accelerates it further
using the finite difference method.

1
]SSM(H)zEvap [Evapv [vTvx(SB (x) v)] + > N (x)llzl
where p,, is N'(0,1;) or Rademacher dist.

Denoising Score Matching (DSM) 14
DSM bypasses Tr(V,Sg(x)) computation by replacing p(x) with
q(x) = [ q,(Z|x)p(x)dx, Gaussian perturbed distribution.
1 N s
]DSM(H) — EIE£~qG(f|x)IEx~p(x)”SQ (X) _ vf 1Og pa(xlx)llz
- 1 - -
where Vg logps (X|x) = — (x — X) as X~N(x,0%1,)

To express Vi logp, (X|x) in closed form, DSM models p, as Gaussian. This
imposes a constraint that the drift and diffusion terms of SDE must be affine.
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Our Method a_ﬁ\
We bypass Tr(V,Sg(x)) by combining two lemmas. oy

Lemma 1. Local curvature smoothing (s

1
]fcs(e» X,0) = ng(H» x) + 502 IV, Se (X)HIZ:

= Eyion(x, 021,) [J$1,(8,x)] + 0(e?)
where € :== ||x — x'||,.

Lemma 2. Stein’s ldentity for Gaussian (e

Exr~g[VerS(x") + S(x)V,, log Q(x")] =0

When Q(x") = N (x, a%1,),

!

X —X

0-2

IEx’va [erS(X’)] = Eyi~g [ S(x,)]

Bypassing Jacobian trace

From Lemma 2,

]Exr~]\f(x, UZHd) [Tr(Vng (X’))] = IExr~]\f(x, azlld) [S(x,)T - 0-_2 x]

Objective Function

Putting Lemma 1 into the above,

!

U Sl | ,
Jicss(0,x,0) = [Ex,NN(x, o2ly) [S(X )" 52 + 5 159 (x )||2]

The time-conditional version is :

Xle—X 1
Jicss(8, %0, t) = By yr(xy, 021,) [S(x,t’ 2 2 T3 l1Se(xs, t)||2]-

t

The loss function of score-based diffusion model with LCSS is:

T
]LCSS(H) = f A(t)ExONPdata UECSS(H' xo,t)]dt.
0

We set A(t) = g(t)?, the drift term of SDE. (i.e., A(t) = ¢ for VE SDE.) )
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Experimental Results

Elapsed time for model training (ms)J.

Score matching method
Dataset Model SSM FD-SSM DSM LCSS

Checkerboard MLP 497 445 430 419
FFHQ NCSNv2 1838 1367 1381 1075

Density estimation.

Data SSM DSM  LCSS (Ours)

Right: Samples generated from models trained on CelebA-HQ (1024 X
1024) with LCSS. Model: NCSN++ with VE SDE.

Ablation: the roles of each term by varying the weight y:

!

, Xe—Xo 1 ,
ExltNN(xo, U?Hd) []/S(X tr t)T O_tz + E ”59 (X t t)llzl

y =0.5
Iter: 300k lter: 300k Iter: 10k Iter: 300k lter: 600k
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