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Presenter Notes
Presentation Notes
Hello Welcome everyone.
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Presenter Notes
Presentation Notes
In our training framework, we have 3 main components, Soft-actor critic reinforcement learning algorithm, a trainable reward function and a curriculum generation part. Our main contribution is in the curriculum generation part, where we use a diffusion model to generate the curriculum goals.



How Q and reward function changes during training
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Presenter Notes
Presentation Notes
Before I explain our method, let me first give you an idea of the intuition behind it. In our visual representation, the agent is shown in orange, and the desired goal is represented by a red dot.In the first column, we have the Q function, and in the second column, we see the reward function with respect to the position as training progresses.  As training continues, you'll notice that the Q function peaks continuously change as the agent progresses. Similarly, the reward function reaches its highest value near the desired goal. This means we can use both of these functions to generate curriculum goals, as they provide valuable information about the agent's progress.



Methodology

« We used a diffusion model to generate curriculum for the agent.

Algorithm 2 RL Training and Evaluation

Input:no. of episodes E', timesteps T’
Select an off-policy algorithm A > In our case, A is SAC
Initialize replay buffer B < 0. g. < {ga} and networks Q. 7y, 7,
for episode = 0... E do
Sample initial state sg
fort=0...1 do

at = (8¢, gc)

Execute a,., obtain next state s,

Store transition (s, a;, ¢, S¢11, ge) in B

bl

Al hAlEr

jo +— DiffusionCurriculumGenerator(i

Te ) S0 .

Update () and 7 with b to minimize L and £ in Eq. @ and in Eq.

. Update the AIM reward function r,

15: success <=0 > Success rate
16: Sample a desired goal gq ~ G

17: fori =1... Niestrollout do

18: a; = 7(s¢, 94)

19: Execute a,, obtain next state s, and reward r,
20: if |(si21) — ga| < r then

21: | success =< success + 1/ Niestrollout
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Presenter Notes
Presentation Notes
Here, we explain our methodology using pseudocode. First, we initialize the replay buffer and neural networks, none of which are pre-trained. All neural networks are initialized randomly. Next, we collect experiences and store them in the replay buffer. After that, we sample a minibatch and provide it to the diffusion model. The diffusion model then gives us a set of curriculum goals.



Methodology

We used a diffusion model to generate curriculum for the agent.

Algorithm 1 Diffusion Curriculum Goal Generator

I: Input: state s, no. of reverse diffusion timestep NV, training step A
2: Obtain states s from the minibatch b

3fori=1.....M do > Training iterations
4: gN ~ N(U TI)
5: fork=N.....1do > Reverse diffusion process
6: e~N(0,T)
7 gk—l:\/%k(gk_\/fh—ak (JkAS')—F\/EE DUSiIlgEq.@
8: k ~ Uniform({1,...,N})
9: e~N(0,1I)
10: Calculate diffusion £4(0), Q(s.go.7(s)),7(ga, o) > Calculate with the generated goal g
11: Calculate total loss £ = £4L4(0) — £,Q(5,80.7(5)) — &7 (8o, 9d) > Eq|l1
12: 0+ 60 —nVeL > Take eradient descent step and update the diffusion weights

|return o |
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Presenter Notes
Presentation Notes
The question is, how do we use the diffusion model to generate curriculum goals? Here, we show a training iteration for the diffusion model. The diffusion model consists of both forward and reverse processes. We begin with the reverse diffusion process. First, we sample pure Gaussian noise and then denoise it in the reverse diffusion process by subtracting the predicted noise and iteratively repeating the denoising steps. At the end of this reverse loop, we obtain \( g_0 \).Next, we proceed with the forward diffusion process.  We calculate the diffusion loss, Q value, and reward value using the generated goal \( g_0 \).

We minimize diffusion loss while maximizing both the Q value and the reward. This balances the difficulty of the goals, ensuring they are neither too easy nor too difficult, helping the agent progressively move toward its desired goal.



“How Diffusion model is learning to generate
curriculum goals.

Oy L

e,

\\bs*,.rf . e’“ Q!a"a9 .‘T‘
_ %UN[VERS]TA 3*""'NEURAL INFORMATION

%%J-,, PROCESSING SYSTEMS
DQ'H



Presenter Notes
Presentation Notes
In this video, you can see how the diffusion model learns to generate curriculum goals. It starts in the top-left corner, where we sample pure Gaussian noise, and bit by bit, it gets denoised. By the time we reach the bottom-right, we have \( g_0 \), which is the fully denoised set of goals. As the video goes on—representing more training episodes—you’ll notice the agent making progress, and \( g_0 \) gradually covers the whole environment.



Different Strategies to select curriculum goals
Selecting Curriculum Goals
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Presenter Notes
Presentation Notes
We used two strategies for generating curriculum goals. The first strategy takes the final state of an agent's trajectory and provides it to the diffusion model. 
our second strategy samples multiple states from the replay buffer and uses the diffusion model to generate curriculum goals. We then select the optimal curriculum goal using bipartite graph optimization by maximizing the cost function.


S
Generated curriculum goals during training
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Presenter Notes
Presentation Notes
This visualization shows curriculum goals generated by a diffusion model during its training process.  Each color represents a different stage of the training (timestep) and it  illustrates how the model learns to navigate three distinct maze environments:


Results and Success Rate
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Presenter Notes
Presentation Notes
As you can see here, these results  highlight how effective our proposed method is. our method outperforms or matches all the baseline methods.


Ablatlon Study
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Presenter Notes
Presentation Notes
We conducted an ablation study to analyze the roles of the reward and Q functions in generating curriculum goals. In the visualization, the red line shows the full loss function, the green omits the reward, and the blue omits the Q function. The results show that performance drops significantly without the reward, and the agent fails entirely without the Q function. Additionally, you can see the goals generated when using only the Q or reward functions.


Conclusions

* We introduced the Diffusion Based Curriculum Reinforcement Learning
(DiCuRL) that utilizes diffusion models to generate curriculum goals.

« The diffusion model is trained to minimize its loss while simultaneously
maximizing Q and Reward function.

* The generated goals promote exploration due to the inherent noising and
denoising mechanism of the diffusion model.

 Additionally, we tested DiCuRL on two robot manipulation tasks,
FetchPush and FetchPickAndPlace (see the results in the paper.)
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