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Preliminaries (Structural Causal Model)

Preliminaries

Structural Causal Model (SCM) is a 4-tuple M = (U, V., F, Py).

e U is aset of exogenous variables.

e V is aset of endogenous variables.

e _F is acollection of functions describing causal mechanisms.

e Py is a probability distribution over exogenous variables.

Vi < fw(Pay,Uy)
F—

Vn‘. — fvyn(Pa‘/n’ U‘/ﬂ)
whereVi=1...n, V; €V,
and Pay, CV,Uy C U.

bl

if Uy, U UI,.'J =0

otherwise

e

The general form of F.

Build causal graph G from _F.
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Vi <« fn(Pay,Uy)
F =

Vo < fv,(Pay,Uy,)
whereVi=1...n, V; €V,
and Pay, CV,Uy C U.

bl

if Uy, U UI,.'J =0

otherwise

e

The general form of F.

Build causal graph G from _F.

Recursiveness

There exists an order in F
such that for any fi, f; € F,
if £, < f;, then V; ¢ Pay..

This implies that given values for
exogenous variables u € Qyj, all

values of endogenous variables in

Vare also fixed (i.e., there exists
a unique solution for endogenous
variables w.r.t. 1), and the causal
graph ¢ is an acyclic directed
mixed graph (ADMG).

Assumption on SCMs.
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Pearl Causal Hierarchy (PCH) defines symbolic languages £, £2, £3.

e [;-expression syntax: (Boolean combinations Variables: 0, 0, A Observations: W, ®, A Interventions: <, , «
Of) inequalities between pOIynomiaIS over The submodel of SCM M under intervention «: M«
terms P(a), where P(a) IS an £;-term. SCM M | Observational Interventinal Counterfactual

e [i-termsare those of the form r(Y) H = ®
e [s-termsadditionally include P(Y,) Beﬁlgz?gr @ﬁ} ééj‘@f
e [3-termsencode conjunctions P(Yy...., Zw)
({Yx,...,Zw} will be abbreviated as Y..) if O were ®
Natural Ois m? o0 would be ® under
i : : Language 15 |- under <2 A would be A
e [,-expression semantics: assign L,-term P(«) under “.?
F 1
P(Y,€),) = / Loy (y,)(u) dPy Laggg:ge P(@O=m) P(o=e) P(a=Al0=9)
Qu
called £s-valuation, while £, and Lo-valuations are special PCH L1 Lo L
cases. ), is termed counterfactual event.
e Oy is the domain of exogenous variables SCM M M- M-, Mo

e (Ny(dy) ={u| Y.(u) €V}

° Y¥(11) is called potential outcome, inferred from SCM A brief illustration of SCM, PCH and counterfactual concepts.

The collection of observational, interventional, and counterfactual distributions induced by SCM,
as delineated by the above syntax and semantics, is called Pearl Causal Hierarchy (PCH).

[1] E. Bareinboim, J. D. Correa, D. Ibeling, and T. Icard. On Pearl’s Hierarchy and the Foundations of Causal Inference
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Counterfactual Estimation

Counterfactual Estimation is a subtask within counterfactual reasoning. From the perspective
of PCH, it involves estimating the value of the Ls-expression, which requires estimating the
value of each term P(Y.).

Estimating counterfactual expression of special forms, such as effect estimation, has been
extensively discussed. However, estimating the general case of 7().) is less frequently

addressed due to several challenges:
1. According to definition, it requires the computation of a Lebesgue integral,
2. Exactinference in discrete settings has exponential complexity™];
3. Marginal inference in SCMs is NP-hard!?l,

Thanks to the recent advancements in counterfactual generation, a class of models called
neural proxy SCMs, which leverage neural networks and simple exogenous distributions to
simulate the underlying true SCMs, enables tractable approximations of Ls-expressions on the
true SCMs.

[1] Y. Han, Y. Chen, and A. Darwiche. On the complexity of counterfactual reasoning.
[2] M. ZecCevi¢, D. S. Dhami, and K. Kersting. Not all causal inference is the same.
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Monte Carlo Integration

A widely used method for estimating the Lebesgue integral is Monte Carlo integration.

e Rejection Sampling

P(Y.) = Eungy [layy.)(u)] = ZIHQU

- The indicator limits the eff|0|ency — many samples will be discarded.

e Importance Sampling

P(Y.) = Eu-gy [0y, (u Zay* D), let oy, (u):%—g}ngu ()

- May allow more samples to contrlbute but variance depends on the proposal distribution.

1 [
Vaau o (@] =n -V |3 S50 ))] = Euvry [03.(w)] = P*(2)
i=1
= Learning good proposal to reduce variance.
- Optimize cross-entropy
- Optimize x*divergence
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Exogenous Matching

A learned proposal is typically "one-off," meaning that a
proposal used to estimate »(:") is not applicable to (),
which is inefficient when estimating expressions involving
multiple P(y.) terms. We are interested in exploring the
following questions:

Q1. Can we train a universal proposal for different
counterfactual events ¥V, ¥, c 0y.?

Q2. Can we train a universal proposal even for different
counterfactual variables v!".v{,...?

Exogenous Matching (EXOM)

argmin —E,.o [E,uw Py [log q(u [‘Y,(f} (u)J)] ]
%, "o  ® e

@ the proposal distribution
@® the exogenous distribution
© the prior state distribution
O potential outcomes
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7, "o o G
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© the prior state distribution
O potential outcomes

Variance Upper Bound

Theorem 1 (Variance Upper Bound). Let oy_(u) = (p(u)/q(uly.)) Loy y.)(u), where g(u|y.)
denote the density of the proposal distribution Qu|y, , and let Y., (u) be the potential response w.r.t.
u. If for any y. € )., there exists £ > 1 such that 1/x < p(u)/q(u|y.) < & holds almost surely
on the support Qg (Y,), then for any Quy, wherey, € Y.:

Vurquy, [03. ()] € —Euvpy logg(u Y. ()] +ec, (©6)

where the constant ¢ is solely dependent on x and Py.

- Use conditional distribution Qu,., where y. € Y, as proposal
for different counterfactual events.

- If importance weights are bounded, then for any y. € Y., any
estimator using Quy. as proposal will share a common variance
upper bound independent of y..

Expected Variance Upper Bound

Corollary 1 (Expected Variance Upper Bound). Let Qs denote an arbitrary distribution defined over
the state space S of a stochastic counterfactual process, and let P;,s_) denote an arbitrary distribution
defined over the o-algebra E(\f) corresponding to a set of counterfactual variables Y given a state
s € S. Py, is the joint distribution induced by P:f,’;) and @Qs. If the conditions in Thm. 1 are met for
any Y and any s € S, then for any Qyy. wherey, € V') and any s € S:

Eyopy, [Vanoy. [03. (W] < ~Eungs [Eunry [logg(u| YO )| +e @

where the constant ¢ is the same as in Thm. 1.

- Use conditional distribution Quyy,, where y.c ¥ and s € S,
as proposal for different counterfactual events and variables.
- Same conclusion extended to different counterfactual variables.
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Counterfactual Markov Boundary

To model the conditional distribution “uy., we aim to infer information about the exogenous variables U from the

counterfactual variables Y.

We seek to identify which variables in the counterfactual variables Y, are informative to the exogenous variable U,. The
smallest subset B,(Y,) C Y, encoding complete information is referred to as the counterfactual Markov boundary.
Masking out information from variables that are not part of the Markov boundary, akin to feature selection, intuitively

improves performance.

@
Cre (U Vi) \ Y.
@ eB(Y.)

(O eY.\B(Y.)

s mean counterfactual
variables that are not in Y ..

. are identified as counterfactual
Markov Boundary of
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Figure 4: Ablation study for Markov boundaries on 4 different settings of SCMs: (a) SIMPSON-
NLIN, (b) LARGEBD-NLIN, (c) M, (d) NAPKIN. A higher ESP signifies greater sampling efficiency.
In most cases, EXOM with Markov boundaries masked (orange bar) exhibits superior performance
compared to when the Markov boundaries are not masked (blue bar).

An example of counterfactual Markov boundary.

Ablation study on counterfactual Markov boundary for EXOM.
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Results

m = { mj Mg ~-- I } == lh-})m(nrd

s, = Compute

,ﬂ. Thm. 3 | W Encoding
C(Y1,y1.X1.x1) ;/y
Eq. 10 C(Y,,y2,X5,%2) >

Y - h g g ey* = QUly*
\b

C(Y 1, yi X Xk)

Figure 2: Overview of the conditioning and masking process. y, serves as the input to the entire
process, m represents the inferred mask, and the vectorized parameters )y, of the proposal distribution
Qu)y. are the output. Different colors represent information from different submodels. Both % and g

represent neural networks.

Overview of the conditioning and masking process.
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Figure 3: LL (negative Eq. 8) and ESP, FR
on SIMPSON-NLIN. As LL increases, ESP in-
creases while FR decreases, until convergence.

An example of the convergence.
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Results

Table 1: Comparison of RS, CEIS, NIS, and EXOM (ours) across 3 different SCMs, with |s| = 1,3, 5.
Among the three SCMs, SIMPSON-NLIN is Markovian diffeomorphic, NAPKIN is Semi-Markovian
continuous, and FAIRNESS-XW is Regional canonical. The results are averaged over 5 runs. Higher

ESP and lower FR indicate better performance.
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SIMPSON-NLIN NAPKIN FAIRNESS-XW
Is| Model ESPt FR| ESPT FR| ESPT FR/
RS 0.008 0971 0006 0967 0.156 0.065

CEIS 0.037  0.809 0017 0911 0255 0.532

1 NIS 0.008 0961  0.007 0965 0.193 0.527
EXOM[GMM] 0.117  0.245  0.039 0476 0.358 0.009
EXOM[MAF] 0.581 0.005 0.306 0.066 0.339 0.007

RS 0.000 1.000  0.000 1000 0.038 0.281

CEIS 0.000 1.000  0.000 1.000 0122 0.704

3 NIS 0.000 1.000  0.000 1.000 0.116 0.686
EXOM[GMM] 0.024 0500  0.011 0.613 0.247  0.056
EXOM[MAF] 0.606 0.075 0.397 0.183 0.261 0.043

RS 0.000 1.000  0.000 1000 0.030 0.368

CEIS 0.000  1.000  0.000 1.000 0.106 0.727

5 NIS 0.000  1.000  0.000 1.000 0.094 0.724
EXOM[GMM] 0.020 0497  0.009 0.644 0.231  0.084
EXOM[MAF] 0.698 0.031 0.482 0.094 0.237 0.070

Comparison of EXOM with other methods.

Table 2: Estimation of counterfactual densities on CausalNF and counterfactual effects on NCM.
Here, "O" represents the original SCM, and "P" represents the proxy SCM. For SIMPSON-NLIN,
the proxy SCM is CausalNF, and the metric used is FR ("-" indicates FR equals 1); whereas for
FAIRNESS, the proxy SCM is NCM, and the metric used is the average bias w.r.t. the ground truth.
The subscript denotes the 95% CI error bound over 5 trials. For more details, see App. C.9

SIMPSON-NLIN FAIRNESS
Method ~ SCM  |s|=1 |s|=3 |s|=5  ATE ETT NDE  CtDE

RS 0 0.89% 014 - - 0.01p013 0.0lgg1s  0.01g015 0.01p.020

P 0.900.012 - - 0.01p,013  0.01g,021  0.01p.014  0.010,023

0 0.00000s 002005 00lgosr  00dgo0s 0060108 0049131 0070238

EXOMIMAF] P 0.0lgoos 0.40p02 0.6lgms 0.0lpms 0.0lgpza  0.0lpos  0.01p04e
8] 0.000.006 0.02p016 0.01gp4s 0.01p.018 0.01gpz0 0.01pg20 0.01p.030

EXOMINICEL 5 (01000 04Dgors  0.6loos  0.01pcr  0.0logz  0.0Lporz  0.05g nz

Results of EXOM on synthetic datasets and proxy SCMs.
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Code is available: https://github.com/cyisk/exom

Yikang Chen
https://cyisk.github.io
51265902150@stu.ecnu.edu.cn
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