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Leverage task knowledge to constrain the action space and focus

exploration to relevant actions
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Our continuous action masking concept

Encode domain knowledge in a state-dependent relevant action set A" (s)
to constrain the sampling from the policy to this set.

a" ~ mp(a”|s) = h(mg(als), A"(s)).

Assumptions
» The relevant action set A" (s) is convex and can be computed in every state

» The policy is represented by a parameterized probability distribution a ~ 7y(als)



We propose three approaches for obtaining the relevant policy

A" relevant action set
l .
.Ai latent actlor.1 set 4 /%\G(.’g)‘
a relevant action e >
c center of A" ' 7 ax ,,("2)= my(a”|s)
. of A"
GT Generator rrTat of A /lrl\ G(.1) mo(als)
m,  relevant policy > ; —
A a A | |
AT : :
C | |
a a
a
Ray mask Generator mask Distributional mask




The masking approaches improve sample efficiency

and performance
on four control environments
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Focusing on state-dependent relevant action sets with continuous
action masking

Key findings

By constraining the action space of the RL agent, continuous action masking can
P incorporate domain knowledge,
» improve sample efficiency and convergence,
> provide safety guarantees.

Future work
» deterministic policies

P> non-convex and disjoint relevant action sets
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