Accelerating data-driven

algorithm design
November, 2024

3 **NEURAL

Nina Balcan, Chris Seiler, Dravy Sharma

Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms
« Algorithms are concepts, and problem instances are data

Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms
« Algorithms are concepts, and problem instances are data
* Typically parameterized algorithm families over continuous space C

Complete
linkage

Single linkage

Family of heuristics:

Merge cluster pairs A,B

minimizing
amin,_, g d(a,b) + (1-
a) MaX,capes d(a,b)
Merge cluster pairs A,B Merge cluster pairs A,B
minimizing min__, . d(a,b) minimizing max_ _,, .5 d(a,b)

Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms
« Algorithms are concepts, and problem instances are data
* Typically parameterized algorithm families over continuous space C

* Loss function is often piecewise-structured

/
|

loss

Prior work

Bounded sample complexity:

- Poly number of instances needed to learn the best algorithm parameter
- Typically achieved by ERM (Empirical Risk Minimization)
- Minimize loss on training samples

Computational complexity: ??

Challenge: Computing the pieces of the piecewise loss function efficiently

Linkage-based clustering

We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage

Loss is a piecewise constant function of interpolation parameters

Worst-case: number of pieces can be exponential in number of parameters!

Linkage-based clustering

We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage

Loss is a piecewise constant function of interpolation parameters
Worst-case: number of pieces can be exponential in number of parameters!

Our result: Loss can be computed efficiently whenever number of pieces is small

Key novel ideas

- Execution tree
- Clarkson’s algorithm

Execution tree

Compute the refinement of pieces induced by each merge step

Clarkson’s algorithm

Compute the set of non-redundant hyperplanes in a linear system in
output-sensitive time

Clarkson’s algorithm

Compute the set of non-redundant hyperplanes in a linear system in
output-sensitive time

Key result (informal)

Suppose the loss (as a function of the hyperparameter, on a fixed instance) is
piecewise-structured with linear boundaries.

Then ERM can be implemented by solving R linear programs, where R is the
number of pieces that actually appear in the loss function.

Applications

Problem Dimension Prior work (one instance) 7's (one instance)
Two-part tariff (=1 O(K?®) [BPS20] O(R+ K),
pricing any / K©°® [BPS20] O(R2K)
Linkage-based d=2 O(n'8logn) [BDL20] O(Rn3)
clustering any d O(n®¥*2logn) [BDL20] O(R%n?)
DP-based sequ- d=2 O(R? + RTpp) [GBN94] O(RTpp)
ence alignment any d sOGd) T . [BDD121] O(RAEHT,)

