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* Loss function is often piecewise-structured
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Prior work

Bounded sample complexity:

- Poly number of instances needed to learn the best algorithm parameter
- Typically achieved by ERM (Empirical Risk Minimization)
- Minimize loss on training samples

Computational complexity: ??

Challenge: Computing the pieces of the piecewise loss function efficiently



Linkage-based clustering

We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage

Loss is a piecewise constant function of interpolation parameters

Worst-case: number of pieces can be exponential in number of parameters!
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We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage

Loss is a piecewise constant function of interpolation parameters
Worst-case: number of pieces can be exponential in number of parameters!

Our result: Loss can be computed efficiently whenever number of pieces is small



Key novel ideas

- Execution tree
- Clarkson’s algorithm



Execution tree

Compute the refinement of pieces induced by each merge step




Clarkson’s algorithm

Compute the set of non-redundant hyperplanes in a linear system in
output-sensitive time
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Key result (informal)

Suppose the loss (as a function of the hyperparameter, on a fixed instance) is
piecewise-structured with linear boundaries.

Then ERM can be implemented by solving R linear programs, where R is the
number of pieces that actually appear in the loss function.



Applications

Problem Dimension Prior work (one instance) 7's (one instance)
Two-part tariff (=1 O(K?®) [BPS20] O(R+ K),
pricing any / K©°® [BPS20] O(R2K)
Linkage-based d=2 O(n'8logn) [BDL20] O(Rn3)
clustering any d O(n®¥*2logn) [BDL20] O(R%n?)
DP-based sequ- d=2 O(R? + RTpp) [GBN94] O(RTpp)
ence alignment any d sOGd) T . [BDD121] O(RAEHT,)




