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Introduction

Combinatorial Optimization (CO)

The objective is to find the discrete optimal value as follows:

- . : N | Vi€ [l], gi(x;C) <0
wE%l,?}N f(x;C) subjectto =€ {w € {0,1} |Vj e ], hi(@;C) = O} (1)

C' € C represents instance-specific parameters (e.g., a graph G = (V,FE)), and f : X xC — R
denotes the cost function.

Learning-Based Methods for CO Problems

Learning-based methods have gained attention as general-purpose solvers due to their ability to
learn problem-specific heuristics.

= Supervised Learning (SL)-based Solvers

= Method: Predict solutions for unseen instances by training on optimal solutions as supervised labels.
= Challenges: Limited availability of optimal solutions in real-world settings and poor generalization.

= Reinforcement Learning (RL)-based Solvers

= Method: Learn a policy to solve CO problems by optimizing reward signals as feedback.
= Challenges: Training is notoriously unstable due to noisy gradient estimations and the difficulty of exploration.

Unsupervised Learning (UL)-Based Solvers

Penalty Method

In UL-based solvers, Eqg. (1) is redefined as an unconstrained CO problem:
I+J
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where, forall i € [I +J], v : {0,1}" x C — R represents a penalty term that increases when
constraints are violated and A = (A\;)1<j<r+J € R/*+/ denotes the penalty strengths.

vie[l], wi(a;C) = max(0, g;(x; C)), Vj € [J], vj@;C) = (hj(a;C))".
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Continuous Relaxation

UL-based solvers employ a continuous relaxation strategy as follows:
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where p = (p;)1<i<n € [0, 1]"Y represents a set of relaxed continuous variables.
UL-Based Solvers

The relaxed vector p is parameterized by a neural network, represented as pg. The parameters 6
are optimized by directly minimizing the following label-independent objective function:
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After training, the relaxed solution py is converted mto d|5crete variables using artificial rounding.
Specifically, Vi € [N], z; = int(pg ;(C)) [2].

In summary, UL-based solvers reformulate the CO problem in Eq. (1) as an optimization problem
over the higher-dimensional parameters 0 of a neural network, analogous to kernel methods.
UlL-based solvers that leverage Graph Neural Networks (GNNs) are referred to as PI-GNN [2].
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Practical Issues of UL-Based Solvers

®
FUJITSU

Experiments

Ambiguity in Rounding

= Ul-based solvers often produce the half integral values 1/2, which undermines the robustness
of the existing rounding methods.

Optimization Issue

= Angelini demonstrated that the PI-GNN solver falls short of achieving results comparable to
those of greedy algorithms [1].

= Wang highlighted the importance of utilizing training or historical datasets, D = {Cu}lglugp,
which consist of various graphs, as well as initializing with outputs from greedy solvers [3].

Continuous Relaxation Annealing (CRA)

To balance discreteness and continuity, we introduce
the following penalty term:
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where v € R is the penalty parameter, and the even
number o determines the curvature.

=0
~v < 0: Encourages the relaxed variables to favor 4
continuous space, smoothing the non-convex objec-
tive function f(p; C, A) due to the convexity of the
penalty term &(p). y >0

v > 0: Encourages the relaxed variables to favor ~ Smeoothing
discrete space, pushing continuous solutions toward &

discrete ones. Automatic >
Rounding

Continuous Relaxation Annealing

A technigue to gradually anneal the parameter ~ from a negative value to favor discreteness.

= Exploration Phase (v < 0): Promotes broad exploration by smoothing the non-convexity.

= Rounding Phase: Automatically rounds relaxed variables by transforming suboptimal
continuous solutions oscillating between 1 and 0 into discrete solutions.

= Early Stopping: Monitors the penalty term ®(p) and halts training when &(p) ~ 0.
= Scheduling: Updates v via y(7 + 1) < v(7) + ¢, where ¢ is a small constant.

Experimental Setting

All experiments adopt PI-GNN [2] as the baseline method.

= Architecture, Optimizer: VWe use the same experimental configuration described in PI-GNN
2], employing a simple two-layer GCV and GraphSAGE.

= Annealing: +(0) = —20, with a scheduling rate of ¢ = 1073 and a curve rate o = 2.

= Metric: ApR is defined as ApR = f(x; C)/ f(x™; C'), where ™ denotes the optimal solution.
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We evaluate the performance of CRA-PI-GNN on benchmark problems, including MIS, MaxCut,
and DBM. Below, we focus on summarizing the results for MIS on regular random graphs as a
representative example. Similar gualitative improvements are observed for the other benchmarks.

Degree Dependency

We compare the performance of PI-GNN and CRA-PI-GNN using GCV. The following figure
shows the ApR as a function of degree d for PI-GNN and CRA-PI-GNN solvers. Across all degrees
d, CRA-PI-GNN solver consistently outperforms PI-GNN solver.
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Overcoming Optimization Issues

Several studies [1, 3] have raised optimization concerns for UlL-based solvers. However, CRA-
PI-GNN substantially outperforms heuristics such as DGA and RGA on MIS for graphs with d =
20, 100, without relying on training or historical datasets D = {G”}i:1

Method 20-RRG 100-RRG
RGA 0.776 == 0.001  0.663 &= 0.001
DGA 0.891 = 0.001  0.848 %= 0.002
FGN 0.775 ([3]) -
META-EGN 0.887 ([3]) -

PI-GNN (GCV) 10.000 + 0.000  0.000 = 0.000
PI-GNN (SAGE)|0.745 + 0.003  0.000 = 0.000
CRA (GCV) 0.937 = 0.002  0.855 &= 0.004
CRA (SAGE) 0.963 + 0.001 0.924 + 0.001

Computational Scaling

The computational scaling of CRA-PI-GNN solver for MIS problems on large-scale RRGs with a
node degree of 100 exhibits moderate super-linear behavior. Specifically, total computational time
scales approximately as ~ N1-4 for GoN and ~ N1-7 for GraphSAGE. This scaling is nearly identical
to that of PI-GNN solver [2] for problems on RRGs with lower degrees.
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