Decoupling Semantic Similarity from spatial alignment

Tassilo Wald, Constantin Ulrich, Gregor Köhler, David Zimmerer, Stefan Denner, Michael Baumgartner, Fabian Isensee, Priyank Jaini †, Klaus Maier-Hein†,

8th of November 2024

Similarity of complex systems

- What do models learn?
- How do they solve tasks?
- Do ML systems process information similarly as humans?
- How similar are two images for a network?
- → Done through introspection of these complex systems
- → In this paper: Representational Similarity Matrix (**RSM**) based similarity

1. Extract representations z

- 1. Extract representations z
- 2. Calculate similarity $k(z_1, z_1)$

- 1. Extract representations z
- 2. Calculate similarity $k(z_1, z_2)$

- 1. Extract representations z
- 2. Calculate similarity $k(z_1, z_3)$

- 1. Extract representations z
- 2. Calculate similarity k(z_i,z_i)
- 3. Repeat for all images i,j

- 1. Extract representations z
- 2. Calculate similarity $k(z_i, z_i)$
- 3. Repeat for all images i,j

- 1. Repeat RSM construction for other system
- 2. Compare to through RSM

1. Easy to compare across systems

Image from: Kriegeskorte N, Mur M, Bandettini P. Representational similarity analysis - connecting the branches of systems neuroscience. Front Syst Neurosci. 2008 Nov 24;2:4. doi: 10.3389/neuro.06.004.2008

Research Questions

Focus on Representational Similarity Matrices (RSMs)

- RQ1: What notion of similarity do RSMs capture?
- RQ2: How can we quantify quality of RSMs?
- RQ3: How should I calculate RSM?

Decoupling Semantic Similarity from spatial alignment

In this paper

- 1. Extract representations z
- 2. Calculate similarity $k(z_i, z_j)$
- 3. Repeat for all images i,j

- 1. Similarity calculation between same positions
 - 1. Dependent on spatial alignment

- Similarity calculation between same positions
 - 1. Dependent on spatial alignment
- 2. Invariances are not reflected in this
 - CNNs translation invariance
 - 2. Learned invariances through augmentation

alignment

2024 | **HELMHOLTZ IMAGING**

Introducing Permutation Invariance

- Similarity calculation between same positions
 - 1. Dependent on spatial alignment

- Invariances are not reflected in this
 - CNNs translation invariance
 - 2. Learned invariances through augmentation
- 3. Proposed Solution:
 - 1. Find permutation maximizing similarity

Finding optimal alignment

Introducing Permutation Invariance

- Similarity calculation between same positions
 - 1. Dependent on spatial alignment

- CNNs translation invariance
- 2. Learned invariances through augmentation
- 3. Proposed Solution:
 - 1. Find permutation maximizing similarity

Finding optimal alignment

RQ2: How to quantify RSM quality?

RSM based retrieval

RQ2: How to quantify RSM quality?

1. RSM based retrieval

RQ2: How to quantify RSM quality?

- RSM based retrieval
- 2. Similarity of classifier output-probabilities to inter-sample similarity

Architectures	Cosine Sim. - (ours) PI		Pearson Correlation Inner Product - (ours) PI		ρ RBF - (ours) PI	
ResNet18 ResNet50 ResNet101 ConvNextV2-Base ViT-B/16 ViT-L/32 DinoV2-Giant	-0.276	-0.326	-0.259	-0.270	-0.176	-0.199
	-0.248	-0.291	-0.243	-0.261	0.040	0.029
	-0.192	-0.276	-0.174	-0.240	0.091	0.084
	-0.134	-0.098	-0.132	-0.171	0.117	0.090
	-0.046	-0.100	-0.045	-0.026	-0.077	-0.122
	-0.138	-0.188	-0.138	-0.144	-0.134	-0.166
	-0.012	-0.044	-0.013	-0.031	-0.008	-0.048

RQ3: How to calculate RSMs?

- 1. To maximize quality of RSMs through ...
 - 1. Use permutation invariance to align semantic
 - 2. Use cosine-similarity to calculate similarity

For questions and collaborations get in touch!

Tassilo Wald, PhD Student
Helmholtz Imaging &
Division of Medical Image Computing
tassilo.wald@dkfz-heidelberg.de

@WaldTassilo

☐ I HELMHOLTZ
H ☐ IMAGING

Notkestraße 85 22607 Hamburg

+49 40 8998-4198 info@helmholtz-imaging.de

www.helmholtz-imaging.de

© 2021, Helmholtz Imaging, Unauthorized use and reproduction, as well as any transfer to third parties without consultation is not permitted.