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OFF-POLICY CONTEXTUAL BANDITS

• OFF-POLICY (OFFLINE) CONTEXTUAL BANDIT. A framework that
optimizes decision-making by leveraging logged interactions.

Contexts x ∈ X
User features.

Actions a ∈ A
Products.

Logging policy π0
Current RecSys

• INTERACTIONS. For any i ∈ [n]
• Observe context xi ∼ ν , where xi ∈ X

• Take action ai ∼ π0(· | xi), where ai ∈ A

• Suffers a cost ci ∼ p(· | xi, ai). (ci ∈ [−1, 0], negative reward)

• LOG Dn = {xi,ai, ci}i∈[n] and use it to improve the system.
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OFF-POLICY CONTEXTUAL BANDITS

PERFORMANCE METRIC. For π ∈ Π, the risk is defined as:

R(π) = Ex∼ν,a∼π(·|X) [c(x,a)] ,

where c(x,a) = Ec∼p(·|x,a)[c] is the expected cost of x and a.

TASKS. Given logged data Dn = {xi,ai, ci}i∈[n] by π0:
• Evaluation (OPE). For a new π, estimate R(π) ≈ R̂n(π).

• Selection (OPS). Given {π1, · · · , πm}, select argmini∈[m] R(πi) .

• Learning (OPL). Find π∗ = argminπ∈Π R(π) .
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OFF-POLICY CONTEXTUAL BANDITS

Pessimism is optimal for OPE, OPS & OPL. [1, 2, 3]

• OPE. [4, 5] study concentration properties (beyond MSE).
• OPS. [2, 5] use risk upper bounds (pessimism).
• OPL. [1, 3, 6, 7] use risk generalization bounds (pessimism).

Instead of R̂n(π), they use a high-probability bound Ûn(π):

R(π) ≤ Ûn(π) = R̂n(π) + Ĉ(π) .

What we do.

• Derive tight upper bounds for a broad family of estimators.
• Find the estimator (within that family) with the tightest bound.
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NOVEL CONCENTRATION BOUNDS

We focus on the family of regularized IPS estimators:

R̂hn(π) =
1
n

n∑
i=1

h (π(ai|xi), π0(ai|xi), ci) =
1
n

n∑
i=1

hi , (1)

with h is a transform satisfying (C1): pqc ≤ h (p,q, c) ≤ 0.

h(p,q, c) = p
qc , =⇒ IPS [8] , (2)

h(p,q, c) = min

(
p
q ,M

)
c , M ∈ R+ =⇒ Clipping [9] ,

h(p,q, c) =
(
p
q

)α

c , α ∈ [0, 1] =⇒ Exponential Smoothing [6] ,

h(p,q, c) = p
q+ γ

c , γ ≥ 0 =⇒ Implicit Exploration [5] ...
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NOVEL CONCENTRATION BOUNDS

Let π ∈ Π, define the empirical ℓ-th moment of R̂hn(π) as

M̂h,ℓ
n (π) =

1
n

n∑
i=1

hℓi . (3)

For λ > 0, we define the function ψλ as ψλ(x) = (1− exp(−λx)) /λ.

Let π ∈ Π, L ≥ 1, h satisfying (C1), δ ∈ (0, 1] and λ > 0. Then it
holds with probability at least 1− δ that

R(π) ≤ ψλ

(
R̂hn(π) +

2L∑
ℓ=2

λℓ−1

ℓ
M̂h,ℓ

n (π) +
ln(1/δ)
λn

)
, (4)

• L controls the empirical moments, L↗ tightens the bound.
• Holds for all h, find the h that minimizes the bound!
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INFINITELY MANY MOMENTS

Setting L→ ∞ and minimizing it w.r.t. h yields a bound:

R(π) ≤ ψλ

(
R̂λn (π) +

ln(1/δ)
λn

)
. (5)

for a novel estimator, that we call Logarithmic Smoothing (LS):

R̂λn (π) = − 1
n

n∑
i=1

1
λ
log (1− λwπ(xi,ai)ci) , (6)

with wπ(x,a) = π(a|x)/π0(a|x).

(5) is provably tighter than:

• Our bound with L = 1.
• cIPS (empirical Bernstein).
• IX bound [5].
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LOGARITHMIC SMOOTHING

0 10 20 30 40 50
Importance Weight w¼

IPS
Clipping, M = 20
LS, ¸ = 0.1
LS, ¸ = 0.05
LS, ¸ = 0.01

∀λ ≥ 0, R̂λn (π) = − 1
n

n∑
i=1

1
λ
log (1− λwπ(xi,ai)ci) . (7)

• λ→ 0 recovers IPS.
• Smoothly corrects the IWs.
• Good bias-variance tradeoff.
• Unbounded, with finite variance!
• Sub-Gaussian concentration:

For λ∗ = O(1/
√
n), we have with probability at least 1− δ:

|R(π)− R̂λ∗
n (π)| ≤

√
2σ2 ln(2/δ), where σ2 = 2E

[
wπ(x,a)2c2

]
/n .
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LOGARITHMIC SMOOTHING - OPS/OPL

With λ = O(1/
√
n), and by minimizing R̂λn (π), we reach π∗ in:

• O
(√

E
[(

π∗(a|x)
π0(a|x) c

)2]
/n
)
for OPS.

• O
(√(

E
[
π∗(a|x)c2
π0(a|x)2

]
+ KL(Q∗||P)

)
/n
)
in PAC-Bayes OPL.

→ We identify the best policy with enough n.
→ Faster identification when π0 is close to π∗.
→ Simple, no additional terms (e.g., Emp. variance in SVP [1])
→ Provably efficient for OPS and OPL.
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EXPERIMENTS
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Figure 1: Results for OPE and OPS experiments.

cIPS cvcIPS ES IX LS-LIN (Ours)

rI(U(π̂L)) 14.48% 21.28% 7.78% 24.74% 26.31%
rI(R(π̂L)) 28.13% 33.64% 29.44% 36.70% 36.76%

Table 1: OPL Improvement of Guaranteed risk U and R of the bounds.
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CONCLUSION

• Work of theoretical nature with practical implications.
• Principled approach led us to the design of a new estimator.
• A lot more insight can be found in the paper.

• ... Or let’s discuss the work at NeuRIPS, or even by e-mail!
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