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Background: Task + Method + SotA

« Complex reasoning like mathematical problem-solving
« a critical cornerstone of human cognition
« a significant challenge for SotA large language models (LLMs)

« Instruction tuning (on diverse query-response pairs)
« cost-effective
« achieves SotA across many benchmarks

« Current SotA instruction tuning datasets for mathematical problem-
solving are typically constructed by:
« augmenting existing training datasets with synthetic data
« from proprietary models like ChatGPT.
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Observation: Synthetic Datasets are
Biased towards Easier Queries

We checked most of the existing math instruction tuning datasets,
most of which are synthetic,

and noticed severe biases towards easier queries.
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MetaMathQA: a popular synthetic mathematical instruction tuning dataset

+
MATH: a prominent mathematical competition problem-solving dataset
e 7.5k problem-solution (query-response) pairs (in the training set)
e with human-annotated difficulty levels (1-5 from easy to hard)
l

MetaMathQA-MATH-AnsAug: a MetaMathQA subset constructed by
augmenting the MATH training set as follows:
e sampling candidate solutions with ChatGPT
e and filtering with correct answers
e Finally, there might be zero to multiple solutions to one problem in the
augmented dataset
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E.g., the original /A I+ query distribution

(light blue bars)
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E.g., MetaMathQA biases the distribution
towards easier queries
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MetaMathQA provides an example of
bias towards easier queries

l

This doesn’t seem good.
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Motivation: Enough Difficult Data are Critical
for Learning (Complex Reasoning)

Analogy: Humans need enough practice on difficult tasks.
+

Literature: Difficult data are often considered critical, e.g.,

« Sorscher B, Geirhos R, Shekhar S, et al. Beyond neural scaling laws:
beating power law scaling via data pruning. NeurlPS 2022.

* LiuW, Zeng W, He K, et al. What Makes Good Data for Alignment? A
Comprehensive Study of Automatic Data Selection in Instruction Tuning.

ICLR 2023
l

Hypothesis:
bias towards easier queries
— hinder learning (complex reasoning)
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What causes such biases?

T
“Vanilla Rejection Sampling” (VRS)
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What is Vanilla Rejection Sampling?

The specific method for previous synthetic datasets:

1. Sampling from the model to get the same number
of candidate responses for each query

1. Filtering by whether the answer is correct
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Enough Difficult Data are Critical?
— Deliberate Bias towards Harder Queries?

1. Uniform: sampling responses until each query accumulates
correct responses to a fixed number per query.

l
2. Prop2Diff. sampling responses until each query accumulates
correct responses to the number proportional to some difficulty

metric per query.

E.g., in this work we use: fail rate = likelihood of wrong responses
to the query
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In-Domain Out-of-Domain

iped #Samples  \raT  GSMSK  Collge DM Olympiad Theorem  AVG
GPT-4-Turbo (24-04-09) = 73.4 94.5 = = E 48.4 =
GPT-4 (0314) c 52.6 94.7 24.4 =2 = U -
Claude-3-Opus - 60.1 95.0 "t = = L -
u Gemini 1.5 Pro = 67.7 = = = - - =
All Main Results
Llama2-70B-Xwin-Math-V1.17 1.4M 525 90.2 33.1 58.0 16.3 14.9 442
Ilama3s70B:1CE T Faps e S e =y 450 = RO T 33l S e 081 snE0g O = ] O s
Llama3-70B-MetaMath 0.40M 44.9 88.0 319 53.2 11.6 21.9 419
Llama3-70B-MMIQC 2.3M 49.4 893 376 60.4 153 235 459
Llama3-70B-VRT 0.59M 53.1 90.3 36.8 62.8 19.3 28.6 485

DART-Math-Llama3-70B (Uniform) 0.59M 549118 90410.1 385117 64.1 -?I.3 19.1j02 274112 49.1106
DART-Math-Llama3-70B (Prop2Diff) 0.59M 56.113.0 89.6107 379111 641113 20.0107 282104 493108

7B Math-Specialized Base Model

DeepSeekMath-7B-ICL - 355 64.2 34.7 45.2 93 235 354
DeepSeekMath-7B-Instruct 0.78M 46.9 827 37.1 52.2 14.2 28.1 435
DeepSeekMath-7B-MMIQC 2.3M 453 79.0 353 52.9 13.0 234 41.5
DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 83.9 - - - - -
DeepSeekMath-7B-VRT 0.59M 53.0 88.2 41.9 60.2 19.1 272 48.3
DART-Math-DSMath-7B (Uniform) 0.59M 52.9 J0.1 88.2 40.1 |1.8 60.2 213422 325153 492109

DART-Math-DSMath-7B (Prop2Diff) 0.59M  53.6106 868/14 407]12 6L6114 217126 322150 494111
7-8B General Base Model

Llama2-7B-Xwin-Math-V1.17 1.4M 45.5 84.9 27.6 430 10.5 15.0 37.8
B T D7) 0 [l B A FLT T s T e o ST 165 5 A S0 O E DR o T AT T 142 =00 3nna

Mistral-7B-WizardMath-V1.1 (RL) - 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 59 14.0 289
Mistral-7B-MMIQC 2.3M 374 754 28.5 38.0 9.4 16.2 34.2
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -

Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 - - - - -

Mistral-7B-VRT 0.59M 38.7 823 24.2 35.6 8.7 16.2 343

DART-Math-Mistral-7B (Uniform) 0.59M 435148 82.6103 269127 42.0164 13.2‘1‘4.5 164102 37.413.1
DART-Math-Mistral-7B (Prop2Diff) 0.59M 455168 81.1/12 294152 451195 147160 17.0108 38.8145

Llama3-8B-ICL - 212 51.0 19.9 274 42 19.8 239
Llama3-8B-MetaMath 0.40M 32.5 T3 20.6 35.0 55 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 77.6 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 239 41.7 93 149 352
DART-Math-Llama3-8B (Uniform) 0.59M 453156 825108 27.1132 482165 13.6143 154105 387135

DART-Math-Llama3-8B (Prop2Diff) 059M  46.6169 81.110.6 288149 480163 145152 194145 39.7145

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.
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lamass70B=ICE I s 0 D R A40 T R0 T e 3 s s ST e O e mD g Ol e T e

Llama3-70B-MetaMath 0.40M 44.9 88.0 319 53.2 11.6 21.9 419
Llama3-70B-MMIQC 2.3M 49.4 893 376 60.4 153 235 459
Llama3-70B-VRT 0.59M 53.1 90.3 36.8 62.8 19.3 28.6 485

DART-Math-Llama3-70B (Uniform) ():59M 549118 90410.1 385117 641113 19.1102 274112 491106
DART-Math-Llama3-70B (Prop2Diff) 0.59M 56.113.0 89.6107 379111 641113 20.0107 282104 493108

7B Math-Specialized Base Model

DeepSeckMath-7B-ICL - 355 64.2 34.7 45.2 9:3 235 354
DeepSeekMath-7B-Instruct 0.78M 46.9 82.7 371 522 14.2 28.1 43.5
DeepSeckMath-7B-MMIQC 2.3M 453 79.0 353 529 13.0 234 41.5
DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 839 - - - - -
DeepSeekMath-7B-VRT 0.59M 53.0 88.2 41.9 60.2 19.1 212 48.3
DART-Math-DSMath-7B (Uniform) 0.59M 52.9 10.1 88.2 40.11.8 60.2 213122 325153 492109

DART-Math-DSMath-7B (Prop2Diff) 0.59M  53.6106 868/14 407/12 6L6114 217126 322150 49.411.1
7-8B General Base Model

Llama2-7B-Xwin-Math-V1.17 1.4M 45.5 84.9 27.6 430 10.5 15.0 37.8
B T D7) 0 [l B A FLT T s T e o ST 165 5 A S0 O E DR o T AT T 142 =00 3nna

Mistral-7B-WizardMath-V1.1 (RL) - 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 59 14.0 289
Mistral-7B-MMIQC 2.3M 374 754 28.5 38.0 9.4 16.2 34.2
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -

Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 - - - - -

Mistral-7B-VRT 0.59M 38.7 823 24.2 35.6 8.7 16.2 343

DART-Math-Mistral-7B (Uniform) 0.59M 435148 82.6103 269127 42.0164 13.2‘1‘4.5 164102 37.413.1
DART-Math-Mistral-7B (Prop2Diff) 0.59M 455168 81.1/12 294152 451195 147160 17.0108 38.8145

Llama3-8B-ICL = 21.2 51.0 19.9 274 ) 10.8 23.9
Llama3-8B-MetaMath 0.40M 32.5 713 20.6 35.0 5.5 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 776 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 23.9 41.7 9.3 14.9 35.2
DART-Math-Llama3-8B (Uniform) 0.59M 453156 825108 27.1132 482165 13.6143 154105 387135

DART-Math-L1ama3-8B (Prop2Diff) 059M  46.6169 81.110.6 288149 480163 145152 194145 39.7145

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.




In-Domain Out-of-Domain

iped #Samples  \raT  GSMSK  Collge DM Olympiad Theorem  AVG
GPT-4-Turbo (24-04-09) = 734 94.5 = = E 48.4 =
GPT-4 (0314) c 52.6 94.7 24.4 =2 = - -
Claude-3-Opus - 60.1 95.0 - — - - -
u Gemini 1.5 Pro = 67.7 = = = - - =
All Main Results
Llama2-70B-Xwin-Math-V1.17 1.4M 525 90.2 33.1 58.0 16.3 14.9 442
Ilama3s70B:1CE T Faps e S e =y 450 = RO T 33l S e 081 snE0g O = ] O s
Llama3-70B-MetaMath 0.40M 44.9 88.0 319 53.2 11.6 21.9 419
Llama3-70B-MMIQC 2.3M 49.4 893 376 60.4 153 235 459
Llama3-70B-VRT 0.59M 53.1 90.3 36.8 62.8 19.3 28.6 485

DART-Math-Llama3-70B (Uniform) (]:59M 549118 90410.1 385117 641113 19.1102 274112 491106
DART-Math-Llama3-70B (Prop2Diff) 0.59M 56.113.0 89.6107 379111 641113 20.0107 282104 493108

2 i n -d O m a i n be n Ch m a rkS 7B Math-Specialized Base Model

DeepSeckMath-7B-ICL - 355 64.2 34.7 45.2 9:3 235 354
DeepSeekMath-7B-Instruct 0.78M 46.9 82.7 371 522 14.2 28.1 43.5

+ DeepSeekMath-7B-MMIQC 2.3M 453 79.0 353 529 13.0 234 41.5
DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 839 - - - - -
DeepSeekMath-7B-VRT 0.59M 53.0 88.2 41.9 60.2 19.1 272 483
4 h I I 1 DART-Math-DSMath-7B (Uniform) 059M  529]0.1 88.2 40.1 1.8 60.2 213122 325153 492109
C a e n g | n g DART-Math-DSMath-7B (Prop2Diff) 059M  53.6106 868)14 407,12 616114 217126 322150 49.411.1

7-8B General Base Model

I Llama2-7B-Xwin-Math-V1.17 1.4M 45.5 84.9 27.6 43.0 10.5 15.0 37.8
OUt-Of-domaln benCh marks E M?srf“rglﬁ]i-fcgwf T ST 165 i ahig s Iigur EnE IS o A 14 Z:ee 05 o

Mistral-7B-WizardMath-V1.1 (RL) - 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 59 14.0 289
Mistral-7B-MMIQC 2.3M 374 75.4 28.5 38.0 9.4 16.2 342
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -
Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 - - - - -
Mistral-7B-VRT 0.59M 38.7 823 24.2 35.6 8.7 16.2 343

DART-Math-Mistral-7B (Uniform) 0.59M 435148 82.6103 269127 42.0164 13.2' 4.5 164102 37.413.1
DART-Math-Mistral-7B (Prop2Diff) 0.59M 455168 81.1/12 294152 451195 147160 17.0108 38.8145

Llama3-8B-ICL = 21.2 51.0 19.9 274 ) 10.8 23.9
Llama3-8B-MetaMath 0.40M 32.5 713 20.6 35.0 5.5 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 776 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 23.9 41.7 9.3 14.9 35.2
DART-Math-Llama3-8B (Uniform) 0.59M 453156 825108 27.1132 482165 13.6143 154105 387135

DART-Math-L1ama3-8B (Prop2Diff) 059M  46.6169 81.1106 288149 480163 145152 194145 39.7145

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.




In-Domain Out-of-Domain

iped #Samples  \raT  GSMSK  Collge DM Olympiad Theorem  AVG
GPT-4-Turbo (24-04-09) = 734 94.5 = = E 48.4 =
GPT-4 (0314) c 52.6 94.7 24.4 =2 = - -
Claude-3-Opus - 60.1 95.0 - — - - -
u Gemini 1.5 Pro = 67.7 = = = - - =
All Main Results
Llama2-70B-Xwin-Math-V1.17 1.4M 525 90.2 33.1 58.0 16.3 14.9 442
Ilama3s70B:1CE T Faps e S e =y 450 = RO T 33l S e 081 snE0g O = ] O s
Llama3-70B-MetaMath 0.40M 44.9 88.0 319 53.2 11.6 21.9 419
Llama3-70B-MMIQC 2.3M 49.4 893 376 60.4 153 235 459
Llama3-70B-VRT 0.59M 53.1 90.3 36.8 62.8 19.3 28.6 485

DART-Math-Llama3-70B (Uniform) (]:59M 549118 90410.1 385117 641113 19.1102 274112 491106
DART-Math-Llama3-70B (Prop2Diff) 0.59M 56.113.0 89.6107 379111 641113 20.0107 282104 493108

2 i n -d O m a i n be n Ch m a rkS 7B Math-Specialized Base Model

DeepSeckMath-7B-ICL - 355 64.2 34.7 45.2 9:3 235 354
DeepSeekMath-7B-Instruct 0.78M 46.9 82.7 371 522 14.2 28.1 43.5

+ DeepSeekMath-7B-MMIQC 2.3M 453 79.0 353 529 13.0 234 41.5
DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 839 - - - - -
DeepSeekMath-7B-VRT 0.59M 53.0 88.2 41.9 60.2 19.1 272 483
4 h I I 1 DART-Math-DSMath-7B (Uniform) 059M  529]0.1 88.2 40.1 1.8 60.2 213122 325153 492109
C a e n g | n g DART-Math-DSMath-7B (Prop2Diff) 059M  53.6106 868)14 407,12 616114 217126 322150 49.411.1

7-8B General Base Model

I Llama2-7B-Xwin-Math-V1.17 1.4M 45.5 84.9 27.6 43.0 10.5 15.0 37.8
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Mistral-7B-WizardMath-V1.1 (RL) - 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 59 14.0 289
+ Mistral-7B-MMIQC 2.3M 374 75.4 28.5 38.0 9.4 16.2 342
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -
Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 - - - - -
Mistral-7B-VRT 0.59M 38.7 823 24.2 35.6 8.7 16.2 343

DART-Math-Mistral-7B (Uniform) 0.59M 435148 82.6103 269127 42.0164 13.2' 4.5 164102 37.413.1
DART-Math-Mistral-7B (Prop2Diff) 0.59M 455168 81.1/12 294152 451195 147160 17.0108 38.8145

Llama3-8B-ICL = 21.2 51.0 19.9 274 ) 10.8 23.9
Llama3-8B-MetaMath 0.40M 32.5 713 20.6 35.0 5.5 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 776 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 23.9 41.7 9.3 14.9 35.2
DART-Math-Llama3-8B (Uniform) 0.59M 453156 825108 27.1132 482165 13.6143 154105 387135

DART-Math-L1ama3-8B (Prop2Diff) 059M  46.6169 81.1106 288149 480163 145152 194145 39.7145

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.




In-Domain Out-of-Domain

iped #Samples  \raT  GSMSK  Collge DM Olympiad Theorem  AVG
GPT-4-Turbo (24-04-09) = 734 94.5 = = E 48.4 =
GPT-4 (0314) c 52.6 94.7 24.4 =2 = - -
Claude-3-Opus - 60.1 95.0 - — - - -
u Gemini 1.5 Pro = 67.7 = = = - - =
All Main Results
Llama2-70B-Xwin-Math-V1.17 1.4M 525 90.2 33.1 58.0 16.3 14.9 442
Ilama3s70B:1CE T Faps e S e =y 450 = RO T 33l S e 081 snE0g O = ] O s
Llama3-70B-MetaMath 0.40M 44.9 88.0 319 53.2 11.6 21.9 41.9
Llama3-70B-MMIQC 2.3M 49.4 893 376 60.4 153 235 459
Llama3-70B-VRT 0.59M 53.1 90.3 36.8 62.8 19.3 28.6 485

DART-Math-Llama3-70B (Uniform) (]:59M 549118 90410.1 385117 641113 19.1102 274112 491106
DART-Math-Llama3-70B (Prop2Diff) 0.59M 56.113.0 89.6107 379111 641113 20.0107 282104 493108

2 i n -d O m a i n be n Ch m a rkS 7B Math-Specialized Base Model

DeepSeckMath-7B-ICL - 355 64.2 34.7 45.2 9:3 235 354
DeepSeekMath-7B-Instruct 0.78M 46.9 82.7 371 522 14.2 28.1 43.5

+ DeepSeekMath-7B-MMIQC 2.3M 453 79.0 353 529 13.0 234 41.5
DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 839 - - - - -
DeepSeekMath-7B-VRT 0.59M 53.0 88.2 41.9 60.2 19.1 272 483
4 h I I 1 DART-Math-DSMath-7B (Uniform) 059M  529]0.1 88.2 40.1 1.8 60.2 213122 325153 492109
C a e n g | n g DART-Math-DSMath-7B (Prop2Diff) 059M  53.6106 868)14 407,12 616114 217126 322150 49.411.1

7-8B General Base Model

I Llama2-7B-Xwin-Math-V1.17 1.4M 45.5 84.9 27.6 43.0 10.5 15.0 37.8
OUt-Of-domaln benCh marks E M?slf“rglﬁ]i-fcgl*“* T ST 165 i ahig s Iigur EnE IS o A 14 Z:ee 05 o

Mistral-7B-WizardMath-V1.1 (RL) - 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 59 14.0 289
+ Mistral-7B-MMIQC 2.3M 374 75.4 28.5 38.0 9.4 16.2 342
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -
Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 - - -

b d Mistral-7B-VRT 0.59M 38.7 823 242 35.6 8.7 162 343
4 base models R

DART-Math-Mistral-7B (Uniform) BEI2619427
DART-Math-Mistral-7B (Prop2Diff) 0.59M 455168 81.1]112 294152 451195 147160 17.0108 38.8145

Llama3-8B-ICL = 21.2 51.0 19.9 274 42 10.8 23.9
Llama3-8B-MetaMath 0.40M 32.5 77.3 20.6 35.0 5.5 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 776 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 23.9 41.7 9.3 14.9 35.2
DART-Math-Llama3-8B (Uniform) 0.59M 453156 825108 27.1132 482165 13.6143 154105 387135

DART-Math-L1ama3-8B (Prop2Diff) 059M  46.6169 81.1106 288149 480163 145152 194145 39.7145

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.




All Main Results

2 in-domain benchmarks

+
4 challenging
out-of-domain benchmarks

4 base models
of different kinds

In-Domain Out-of-Domain

iped #Samples  \raT  GSMSK  Collge DM Olympiad Theorem  AVG
GPT-4-Turbo (24-04-09) = 734 94.5 o = E 48.4 -
GPT-4 (0314) - 52.6 94.7 24.4 - - - -
Claude-3-Opus - 60.1 95.0 - — - - -
Gemini 1.5 Pro ~ 67.7 - - -~ - - -

70B General Base Model
Llama2-70B-Xwin-Math-V1.1 1.4M 52:5 90.2 33.1 58.0 16.3 14.9 442
I lamasty0BNCTEl e i e =i 44905 R0 R IS Ts T e ST e R 081 Dy Ol s st Lo e

Llama3-70B-MetaMath 0.40M 44.9 88.0 319 53.2 11.6 21.9 41.9
Llama3-70B-MMIQC 2.3M 494 89.3 37.6 60.4 153 23.5 459
Llama3-70B-VRT 0.59M 531 90.3 36.8 62.8 19.3 28.6 48.5

DART-Math-Llama3-70B (Uniform)  059M 549118 90.4101 385117 641113 191002 274112 49.1106
DART-Math-Llama3-70B (Prop2Diff)  0.59M  56.1130 89.6107 379111 641113 200107 282104 493108

7B Math-Specialized Base Model

DeepSeekMath-7B-ICL - 355 64.2 34.7 452 93 235 354
DeepSeekMath-7B-Instruct 0.78M 46.9 82.7 371 522 14.2 28.1 43.5
DeepSeekMath-7B-MMIQC 2.3M 453 79.0 353 529 13.0 234 41.5
DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 83.9 - - - - -
DeepSeekMath-7B-VRT 0.59M 53.0 88.2 41.9 60.2 19.1 272 483
DART-Math-DSMath-7B (Uniform) 0.59M 529 (0.1 88.2 40.1 /1.8 60.2 213122 325153 49.2109

DART-Math-DSMath-7B (Prop2Diff) 0.59M  53.6106 86.8114 407]12 616114 217126 322150 49.4+1.1
7-8B General Base Model

Llama2-7B-Xwin-Math-V1.17 1.4M 45.5 84.9 27.6 430 10.5 15.0 37.8
B T D7) 0 [l B A FLT T s T e o ST 165 5 A S0 O E DR o T AT T 142 =00 3nna

Mistral-7B-WizardMath-V1.1 (RL) - 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 59 14.0 289
Mistral-7B-MMIQC 2.3M 374 75.4 28.5 38.0 9.4 16.2 342
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -

Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 - - - - -

Mistral-7B-VRT 0.59M 38.7 823 24.2 35.6 8.7 16.2 343

DART-Math-Mistral-7B (Uniform) 0.59M 435148 82.6103 269127 42.0164 13.2' 4.5 164102 37.413.1
DART-Math-Mistral-7B (Prop2Diff) 0.59M 455168 81.1/12 294152 451195 147160 17.0108 38.8145

Llama3-8B-ICL = 21.2 51.0 19.9 274 42 10.8 23.9
Llama3-8B-MetaMath 0.40M 32.5 77.3 20.6 35.0 5.5 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 776 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 23.9 41.7 9.3 14.9 35.2
DART-Math-Llama3-8B (Uniform) 0.59M 453156 825108 27.1132 482165 13.6143 154105 387135

DART-Math-L1ama3-8B (Prop2Diff) 059M  46.6169 81.1106 288149 480163 145152 194145 39.7145

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.
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GPT-4-Turbo (24-04-09) = 734 94.5 o = E 48.4 -
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Claude-3-Opus - 60.1 95.0 - — - - -
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DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 83.9 - - - - -
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Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 59 14.0 289
Mistral-7B-MMIQC 2.3M 374 75.4 28.5 38.0 9.4 16.2 342
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -

Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 - - - - -

Mistral-7B-VRT 0.59M 38.7 823 24.2 35.6 8.7 16.2 343

DART-Math-Mistral-7B (Uniform) 0.59M 435148 82.6103 269127 42.0164 13.2' 4.5 164102 37.413.1
DART-Math-Mistral-7B (Prop2Diff) 0.59M 455168 81.1/12 294152 451195 147160 17.0108 38.8145

Llama3-8B-ICL = 21.2 51.0 19.9 274 42 10.8 23.9
Llama3-8B-MetaMath 0.40M 32.5 77.3 20.6 35.0 5.5 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 776 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 23.9 41.7 9.3 14.9 35.2
DART-Math-Llama3-8B (Uniform) 0.59M 453156 825108 27.1132 482165 13.6143 154105 387135

DART-Math-L1ama3-8B (Prop2Diff) 059M  46.6169 81.1106 288149 480163 145152 194145 39.7145

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.
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Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. ': For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et all,[2023), which is not a very fair comparison with others.
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E.g., DeepSeekMath-7B models can achieve almost perfect coverage on the MATHS500 test set.

— Expensive proprietary models like ChatGPT widely used before are not necessary. g
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Insights

1.

Interpretability: Enough difficult data are critical for
complex reasoning tasks like mathematical problem-solving,
which needs explicit control to ensure the balance.

. Scalability: Scaling up training compute further

and more cost-efficiently in data synthesis
by allocating budget adaptive to data difficulty.
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