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Background: Task + Method + SotA

• Complex reasoning like mathematical problem-solving
• a critical cornerstone of human cognition
• a significant challenge for SotA large language models (LLMs)

• Instruction tuning (on diverse query-response pairs)
• cost-effective
• achieves SotA across many benchmarks

• Current SotA instruction tuning datasets for mathematical problem-
solving are typically constructed by: 
• augmenting existing training datasets with synthetic data
• from proprietary models like ChatGPT.

2



Observation: Synthetic Datasets are 
Biased towards Easier Queries

3



Observation: Synthetic Datasets are 
Biased towards Easier Queries

3



Observation: Synthetic Datasets are 
Biased towards Easier Queries

We checked most of the existing math instruction tuning datasets,

3



Observation: Synthetic Datasets are 
Biased towards Easier Queries

We checked most of the existing math instruction tuning datasets,

3



Observation: Synthetic Datasets are 
Biased towards Easier Queries

We checked most of the existing math instruction tuning datasets,

most of which are synthetic,

3



Observation: Synthetic Datasets are 
Biased towards Easier Queries

We checked most of the existing math instruction tuning datasets,

most of which are synthetic,

3



Observation: Synthetic Datasets are 
Biased towards Easier Queries

We checked most of the existing math instruction tuning datasets,

most of which are synthetic,

and noticed severe biases towards easier queries.
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MetaMathQA: a popular synthetic mathematical instruction tuning dataset
+

MATH: a prominent mathematical competition problem-solving dataset
● 7.5k problem-solution (query-response) pairs (in the training set)
● with human-annotated difficulty levels (1-5 from easy to hard)

↓
MetaMathQA-MATH-AnsAug: a MetaMathQA subset constructed by 
augmenting the MATH training set as follows:
● sampling candidate solutions with ChatGPT
● and filtering with correct answers
● Finally, there might be zero to multiple solutions to one problem in the 

augmented dataset
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The most difficult (level 4-5) queries
↓

take the largest proportion (> 50%).

(light blue bars)
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E.g., MetaMathQA biases the distribution 
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E.g.,
The most difficult (level 5) queries

↓
notably decreases by >50% relatively.

Query-level:
Dropping many hard queries

(light blue → dark blue bars)
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MetaMathQA provides an example of
bias towards easier queries

↓

This doesn’t seem good.
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Motivation: Enough Difficult Data are Critical 
for Learning (Complex Reasoning)
Analogy: Humans need enough practice on difficult tasks.

+
Literature: Difficult data are often considered critical, e.g.,
• Sorscher B, Geirhos R, Shekhar S, et al. Beyond neural scaling laws: 

beating power law scaling via data pruning. NeurIPS 2022.
• Liu W, Zeng W, He K, et al. What Makes Good Data for Alignment? A 

Comprehensive Study of Automatic Data Selection in Instruction Tuning. 
ICLR 2023.

↓
Hypothesis:

bias towards easier queries 
→ hinder learning (complex reasoning)
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How to eliminate the biases
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in synthetic datasets?

↓

What causes such biases?

↑

“Vanilla Rejection Sampling” (VRS)
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What is Vanilla Rejection Sampling?

The specific method for previous synthetic datasets:

1. Sampling from the model to get the same number 
of candidate responses for each query

1. Filtering by whether the answer is correct
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How to Avoid the Bias
towards Easier Queries by VRS?
VRS controls the candidate distribution

explicitly control the final distribution →

Balanced across difficulties
(Uniform one-sample per query here)

↑
Difficulty-Aware Rejection Sampling
(DARS) 14
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Enough Difficult Data are Critical?
→ Deliberate Bias towards Harder Queries?
1. Uniform: sampling responses until each query accumulates 
correct responses to a fixed number per query.

↓
2. Prop2Diff: sampling responses until each query accumulates 
correct responses to the number proportional to some difficulty
metric per query.

E.g., in this work we use: fail rate = likelihood of wrong responses 
to the query
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Results: DART-Math Datasets
As expected:

• VRT baseline is higher for easier queries 
(right)

• Uniform is almost horizontal
• Prop2Diff is higher for harder queries 

(left)

• Area under a line = Dataset size (all 
~590k here)
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Results: DART-Math Models
DART-Math significantly outperforms

1. VRT (identical synthesis model)
2. baselines trained on previous top 

public datasets, e.g.,
a. MMIQC
b. MetaMath

often with smaller training dataset size,
● e.g., 0.59M << 2.2M for MMIQC
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All Main Results

2 in-domain benchmarks
+

4 challenging
out-of-domain benchmarks

+
4 base models
of different kinds

↓
DART is effective!
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Wait! What about the Synthesis Cost?

But the final cost should be acceptable!
1. The synthesis cost is one-time and 
amortizable by numerous training runs, 
e.g.,
a. Data mixture into new dataset
b. Hyperparameter search

The synthesis cost can be huge?
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The final cost should be acceptable!

2. Small open-weight model is enough →

E.g., DeepSeekMath-7B models can achieve almost perfect coverage on the MATH500 test set.
→ Expensive proprietary models like ChatGPT widely used before are not necessary. 21
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Summary

5. Results: DART-Math produce new SotA and data-efficient public 
instruction tuning datasets for mathematical problem-solving, 
without reliance on expensive proprietary models like ChatGPT.

1. Background: Synthetic instruction tuning datasets achieve 
SotA for mathematical problem-solving.

2. Observation: Severe biases towards easier queries exist in these 
synthetic datasets.
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Insights

1. Interpretability: Enough difficult data are critical for 
complex reasoning tasks like mathematical problem-solving,
which needs explicit control to ensure the balance.

1. Scalability: Scaling up training compute further
and more cost-efficiently in data synthesis 
by allocating budget adaptive to data difficulty.
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