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Class Generalizable Anomaly Detection

Training on Known Classes

Inference on Diverse New Classes

Reference
Input Image Images

Reference

The objective is to train one unified AD
model that can generalize to detect
anomalies in diverse classes from different
domains without any retraining or fine- -

tuning on the target data.
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ResAD: A Simple But Effective Framework for Class Generalizable Anomaly Detection

Initial Features Residual Features Constrained Features
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Three parts: Residual Feature Generating, Feature Hypersphere
Constraining, Feature Distribution Estimating.
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Our core insight: Residual features are class-invariant representations!

Why previous AD models are not class generalizable?
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Why can residual features be less sensitive to new classes compared to initial features?

The definition of residual features:

. * v ) A
Residual feature: z}" =} , — 2% Nearest Normal Reference Feature: ;, = argmin,cp, ||z — 2} ,, ||

"h,w n

« Residual features are obtained by matching and then subtracting.

« From the principles of representation learning, we know that features of each class usually
have some class-related attributes to the class for distinguishing from other classes.

« The class-related” means these attributes are typical to the class and distinctive from
other classes.

« As class-related attributes can also exist in normal reference features, the matching process
can be seen as matching the most similar class-related attributes to each input feature.

« By subtracting, the class-related components are very likely to be mutually eliminated.

« Thus, residual features will be distributed in an origin-centered region, even in new classes.
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« ResAD, Model Overview:
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- Residual Feature Generating

- For each feature x},,,, we will match it with the nearest

normal reference feature from the corresponding reference
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(b) Residual Feature Learning

classes. |

« Residual Feature: We define the residual representation of

x1, », to its closest normal reference feature as:
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« Feature Hypersphere Constraining

 In order to further reduce feature variations and also maintain the consistency in feature
scales among different classes, we propose a Feature Constraintor to constrain the initial
normal residual features to a spatial hypersphere.

« Abnormal Invariant OCC Loss: we propose an abnormal invariant OCC loss to optimize our

Feature Constraintor;

H, Wi
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« The loss can constrain the normal re5|dual features to a hypersphere and keep abnormal
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residual features as invariant as possible.
« |f we only constrain features to the hypersphere, the network may more easily overfit and

simply map all features to the hypersphere.
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« Feature Distribution Estimating

« We employ the normalizing flow model as our Feature Distribution Estimator to estimate
the residual feature distribution.
« The maximum likelihood loss function for learning normal residual feature distribution is as

follows:

l E |- .
Fmt = L Z (Hﬂh Z Z —100 2m) 5(7 w) Zhw — log\det.]é,_w\)

* In the class-generalizable AD task, it's aIso valuable for us to effectively utilize abnormal

samples that exist in known classes.
 Following BGADI[1], we employ the explicit boundary guided semi-push-pull loss to learn a
more discriminative feature distribution estimator :

Nn

Ng
Lbg—spp = Z lmin(logp; — by, 0)| + Z |max(logp; — by, + 7,0)|
i=1 j=1

[1] Xincheng Yao, Ruoqi Li, Jing Zhang, Jun Sun, and Chongyang Zhang. Explicit Boundary Guided Semi-Push-Pull Contrastive Learning for Supervised Anomaly Detection. CVPR, 2023.
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« Datasets:

« Industrial AD datasets: MV TecAD, VisA, BTAD, MVTec3D.
« Medical AD dataset: BraTS.

« Video AD dataset: ShanghaiTech (we extract video frames as images for use).
« Settings:
« We evaluate the cross-dataset performance.
« We train on MVTecAD and test on other five datasets without any retraining.
« For MVTecAD, we train AD models on VisA.
« Metrics:

« Area under the curve of the receiver operating characteristic (AUROC),

image-level and pixel-level.
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« Comparison with Few-shot and CLIP-based AD methods:

Baselines Few-shot AD Methods (Non-CLIP-based) CLIP-based AD Methods
Setting Datasets RDAD UniAD SPADE PaDiM PatchCore RegAD ResAD WinCLIP InCTRL ResADf
CVPR2022 NeurIPS2022 ab CVPR2022 ECCV2022 (Ours) CVPR2023 CVPR2024 (Ours)

| Industrial AD Datasets

MVTecAD 65.9/71.9 67.4/81.1 74.6/64.0 79.5/93.8 74.7/85.2 80.4/93.3 85.6/94.1 93.1/93.8 04.0/- 94.4/95.6
VisA 56.4/79.9 52.1/81.8 71.7/65.4 68.7/91.5 65.0/80.4 70.6/93.3 79.9/96.4 81.9/94.9 85.8/- 84.5/95.1
BTAD 82.7/87.3 67.1/85.6 80.7/65.4 88.9/95.2 80.9/83.1 87.2/93.9 93.6/97.1 85.5/95.8 92.3/- 91.1/96.4
MVTec3D 58.7/90.4 51.7/89.4 02.5/78.6  59.6/94.3 58.8/83.4 59.5/96.4 64.5/95.4 74.1/96.8 68.9/- 78.5/97.5
Average 65.9/82.4 59.6/84.5 72.4/68.4 74.2/93.7 69.8/83.0 74.4/94.2 80.9/95.8 83.7/95.3 85.3/- 87.1/96.2
2-shot | Medical AD Dataset
| BraTS || 49.8/66.7 59.5/88.5 | 58.0/92.8 49.4/90.2 58.2/93.5 54.6/81.4 | 65.7/91.2 | 55.9/91.5 74.6/- | 67.9/94.3
| Video AD Dataset
| ShanghaiTech || 56.2/77.6 55.9/79.4 | 73.8/87.0 7T0.4/85.6 71.8/87.8 72.7/87.3 | 78.4/88.5 | 78.5/88.1 68.7/- | 82.4/91.9
| All Average || 61.6/79.0 58.9/84.3 | 70.2/75.6  69.4/91.8 68.2/85.6 70.8/90.9 | 78.0/93.8 | 78.2/93.5 80.8/- | 83.1/95.2
| Industrial AD Datasets
MVTecAD 65.9/71.9 67.4/81.1 75.5/64.0 82.5/94.9 80.6/90.2 84.8/94.5 90.5/95.7 94.6/94.2 04.5/- 04.2/96.9
VisA 56.4/79.9 52.1/81.8 75.0/65.4 75.3/93.3 71.7/87.1 78.0/93.5 86.2/97.4 84.1/95.2 87.7/- 90.8/97.5
BTAD 82.7/87.3 67.1/85.6 81.7/65.5 89.9/95.8 84.0/89.4 90.8/94.9 95.6/97.6 87.2/95.8 91.7/- 91.5/96.8
MVTec3D 58.7/90.4 51.7/890.4 62.3/78.6  62.8/94.5 61.5/87.1 62.3/96.7 70.9/97.3 76.0/97.0 69.1/- 82.4/97.9
Average 65.9/82.4 59.6/84.5 73.6/68.4 77.6/94.6 74.5/88.5 79.0/94.9 85.8/97.0 85.5/95.6 85.8/- 89.7/97.3
4-shot | Medical AD Dataset
| BraTS || 49.8/66.7 50.5/88.5 | 66.3/904.8 60.6/94.5 71.2/95.9 60.0/87.3 | 74.7/194.0 | 67.3/93.2 76.9/- | 84.6/96.1
| Video AD Dataset
| ShanghaiTech || 56.2/77.6 55.9/79.4 | 77.1/87.4  74.3/85.9 77.8/88.2 76.4/87.7 | 79.8/89.5 | 79.6/58.6 69.2/- | 84.3/92.6
| All Average || 61.6/79.0 58.9/84.3 | 73.0/76.0 74.2/93.2 74.5/89.7 75.4/92.4 | 83.0/95.3 | 81.5/94.0 81.5/- | 88.0/96.3

« For new classes, the performance of conventional AD methods will drop dramatically (RDAD, UniAD).

« Our ResAD can achieve superior performance even without any re-modeling or fine-tuning.
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« Ablation study results:

(a) Framework ablation studies. Table 4: Anomaly detection and localization re-
sults when incorporating our method into UniAD.
Model | FAUROC | P-AUROC “RFL” represents residual feature learning.
Ours | 905 | 957
w/o Residual Feature Learning || 728 | 829 | MVTecAD VisA BTAD ~ MVTee3D
P o : UniAD [47] | 67.4/81.1  52.1/81.8 67.1/856 51.7/89.4
. ‘onstr: 2.3 93.5
w/o Feature Constraintor || 8 | +REL (Ours) | 93.0/94.9  727/86.1 87.3/940  76.7/96.9
w/o Abnormal Invariant OCC Loss || 849 | 939 A +25.6/13.8  +20.4/3.3  +20.0/84  +25.0/7.0

« 1. Residual feature learning is of vital significance for class-generalizable anomaly detection.

« 2. Feature constraintor and abnormal invariant OCC loss are beneficial for achieving better
cross-class performance.

« 3. Residual features can generalize to other AD models and significantly improve the

models’ class-generalizable capacity.
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(c) Initial Residual Features

(d) Constrained Residual Features
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Residual Features!

We conclude our finding for future research: residual features are
really effective for designing generalizable AD models, and our
feature constraining insight also has good reference values for
future work.
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Thanks!

Contact Us:
sunny zhang@sjtu.edu.cn
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