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“Hello everyone. Today, I'll be presenting my paper, titled "Unsupervised Homography 

Estimation on Multimodal Image Pair via Alternating Optimization."

My name is Sanghyoeb Song, and I’m honored to share my work with you.

Before I begin, I’ll be using a speech AI(F5 TTS) for clearer audio. Now, let’s get started.”
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Introduction

• Homography Estimation
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Homography Estimation is the process of determining a transformation matrix that aligns two images captured 

from different perspectives.



• End-to-End Learning Approaches – Supervised Learning
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Truth

- Introduced by the paper Deep image homography estimation [1].

- Finding 1-homography from 4-corresponding pairs is a determined problem.

- Direct Linear Transformation (DLT) is used to convert 4-corresponding pairs to 1-homography.
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[1] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep image homography estimation. CoRR, abs/1606.03798, 2016.



• End-to-End Learning Approaches – Unsupervised Learning

- Introduced by the paper Unsupervised deep homography: A fast and robust homography estimation model [2].

- Finding 1-homography from 4-corresponding pairs is a determined problem.

- Direct Linear Transformation (DLT) is used to convert 4-corresponding pairs to 1-homography.
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[2] Ty Nguyen, Steven W. Chen, Shreyas 

S. Shivakumar, Camillo Jose Taylor, and 

Vijay Kumar. Unsupervised deep 

homography: A fast and robust 

homography estimation model. IEEE 

Robotics Autom. Lett., 3(3):2346–2353, 

2018.



• Multimodal Image Pair

Multimodal image pairs refer to pairs of images from different domains, offering complementary insights for a 

deeper analysis.

Introduction

Optical – Map RGB – NIR



• Unsupervised Homography Estimation on Multimodal Image Pair

- Cases of misaligned multimodal image pairs.

- No ground-truth data → Unsupervised learning
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• Trivial Solution Problem

- To solve our problem, there is a simple and straightforward approach.

: Add encoder (or translator) to map images to a common space, enabling simple calculation of L1 or L2 loss.

: There are 2 options for placing encoder(s)

① Just before the loss function ② Between each image and registration network(ℛ)

Preliminaries
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• Trivial Solution Problem

- However, both cases fail to solve the problem due to trivial solutions:

Encoders output a constant value, regardless of input. (𝒚𝑨 = 𝒚𝑩 = 𝒗)

Registration network (ℛ) outputs an identity matrix as the homography. (෡𝑯𝑨𝑩 = 𝑰)

- A different approach is needed to avoid trivial solutions.
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• Siamese Self-Supervised Learning

- Extracting the same features from a pair of partially different images.

- SimCLR [3], Barlow Twins [4], VIC-Reg [5], ...

Preliminaries

𝒙𝑩 Enc. Prj.
𝒓𝑩 𝒗𝑩

𝒙𝑨 Enc. Prj.
𝒓𝑨

𝒗𝑨
(𝑵, 𝑫𝒗)

(𝑵, 𝑫𝒗)

Objective 

Function(s)

[3] TingChen, SimonKornblith, MohammadNorouzi, 

andGeoffreyE.Hinton. Asimpleframework for contrastive 

learning of visual representations. In Proceedings of the 37th 

International Conference on Machine Learning, ICML 2020, 
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2020.
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• Framework - Alternating Optimization (AltO)

Method

𝐆𝐋 𝐏𝐡𝐚𝐬𝐞 ∶ 𝜃𝑡 ← argmin
𝜃

[GeometryGap 𝜃𝑡−1, 𝜂𝑡−1, 𝜙𝑡−1 ]

𝐌𝐀𝐑𝐋 𝐏𝐡𝐚𝐬𝐞 ∶ 𝜂𝑡, 𝜙𝑡 ← argmin
𝜂,𝜙

[ModalityGap 𝜃𝑡, 𝜂𝑡−1, 𝜙𝑡−1 ]
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• Components – Losses

Geometry loss : Spatially extended version of the Barlow Twins loss

Modality loss : The same as the Barlow Twins loss
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• Components – Encoder and Projector

- Proposed encoder and projector are based on ResNet-34 [6].
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[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, 

pages 770–778. IEEE Computer Society, 2016.
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• Evaluation Metric

- Mean Average Corner Error (MACE)

Experiments

• Datasets

- Google Map [7]

- Google Earth [7]

- Deep NIR [8]

[7] Yiming Zhao, Xinming Huang, and Ziming Zhang. Deep lucas-kanade homography for multimodal image alignment. In IEEE Conference on Computer Vision and Pattern Recognition, 

CVPR 2021, virtual, June 19-25, 2021, pages 15950–15959. Computer Vision Foundation / IEEE, 2021.

[8] Inkyu Sa, Jong Yoon Lim, Ho Seok Ahn, and Bruce A. MacDonald. deepnir: Datasets for generating synthetic NIR images and improved fruit detection system using deep learning techniques. 

Sensors, 22(13):4721, 2022.



• Quantitative Result

Experiments



• Qualitative Result

Experiments
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