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“Hello everyone. Today, I'll be presenting my paper, titled "Unsupervised Homography
Estimation on Multimodal Image Pair via Alternating Optimization."”

My name is Sanghyoeb Song, and I’'m honored to share my work with you.

Before | begin, I'll be using a speech Al(F5 TTS) for clearer audio. Now, let’s get started.”

https://neurips.cc/virtual/2024/poster/92937
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Introduction

* Homography Estimation

Homography Estimation is the process of determining a transformation matrix that aligns two images captured
from different perspectives.
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Introduction

* End-to-End Learning Approaches — Supervised Learning

- Introduced by the paper Deep image homography estimation [1].
- Finding 1-homography from 4-corresponding pairs is a determined problem.

- Direct Linear Transformation (DLT) is used to convert 4-corresponding pairs to 1-homography.
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Introduction

* End-to-End Learning Approaches — Unsupervised Learning

- Introduced by the paper Unsupervised deep homography. A fast and robust homography estimation model [2].
- Finding 1-homography from 4-corresponding pairs is a determined problem.

- Direct Linear Transformation (DLT) is used to convert 4-corresponding pairs to 1-homography.
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Introduction

* Multimodal Image Pair

Multimodal image pairs refer to pairs of images from different domains, offering complementary insights for a
deeper analysis.




Introduction

* Unsupervised Homography Estimation on Multimodal Image Pair

- Cases of misaligned multimodal image pairs.

- No ground-truth data = Unsupervised learning
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Preliminaries

e Trivial Solution Problem

- To solve our problem, there is a simple and straightforward approach.

: Add encoder (or translator) to map images to a common space, enabling simple calculation of L1 or L2 loss.

: There are 2 options for placing encoder(s)

(D Just before the loss function ) Between each image and registration network(R)
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Preliminaries

e Trivial Solution Problem

- However, both cases fail to solve the problem due to trivial solutions:
Encoders output a constant value, regardless of input. (y4 = y% = v)
Registration network (R) outputs an identity matrix as the homography. (H4B = I

- A different approach is needed to avoid trivial solutions.
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Preliminaries

* Siamese Self-Supervised Learning

- Extracting the same features from a pair of partially different images.

- SimCLR [3], Barlow Twins [4], VIC-Reg [5], ...
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Method

* Framework - Alternating Optimization (AltO)

The Sisters

GL Phase : 6, < argmin[GeometryGap(6¢_1,N¢—1, Pr—1)]
2

MARL Phase : 1, ¢; < argmin[ModalityGap(8;, n¢—1, Pr—-1)] rne S0 B0F
n.¢ -
IB
<GL Phase> <MARL Phase>
z° C /B i z° \ : Modality A
// : Modality B
“ Ny &, : Trainable
Geometry . Modality R Geometry . Modality | : Frozen
| 1 0 | loss !
! 088 loss ! ! R : Registration Net.
€ : Encoder
P : Projector
)

: Warp




Method

* Components — Losses

Geometry loss : Spatially extended version of the Barlow Twins loss
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where C(, ;5) =

Modality loss : The same as the Barlow Twins loss
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Method

* Components — Encoder and Projector

- Proposed encoder and projector are based on ResNet-34 [6].
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Experiments

* Evaluation Metric
- Mean Average Corner Error (MACE)

MACE(HAP H48) = E [ E [Hw(c, HAPY — w(e, FIAB)HQH

* Datasets
- Google Map [7]

- Google Earth [7]

- Deep NIR [8]

(a) Google Map (b) Google Earth (c) Deep NIR



Experiments

* Quantitative Result

Learning Type Method Google Map [11] Google Earth [11] Deep NIR [31]
(No warping) 23.98 23.76 24.75
DHN [8] 4.00 7.08 6.91
Supervised RAFT [33] 2.24 1.9 3.34
THN-1 [18] 0.92 1.60 2.11
RHWEF-1 [19] 0.73 1.40 2.06
UDHN [9] 28.58 18.71 24.97
CAU [36] 24.00 23.77 24.9
biHomE [10] 24.08 23.55 26.37
Unsupervised  DHN [8] + AltO (ours) 6.19 6.52 12.35
RAFT [33] + AltO (ours) 3.10 3.24 3.60
IHN-1 [18] + AltO (ours) 3.06 1.82 3.11
RHWFEF-1 [19] + AltO (ours) 3.49 1.84 3.22




Experiments

e Qualitative Result
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