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Why BELKA

BELKA Goal

Current datasets

e too small

e critical data biasissues

e fail to test binding prediction

Release large dataset to test if ML can learn to
generalize binding predictions to new chemical space



Why BELKA

BELKA in context

Predicting P(pose | binds) is
much easier than predicting
P(binds)

We made BELKA to help learn
to predict P(binds)

Binding Pose Datasets

e PDBBind

» ~20Kk protein-molecule pairs
e POSEBUSTERS

» ~b00 protein molecule pairs

» Problems with splits, known data leaks
e PLINDER

» ~450Kk protein-molecule pairs

» Great Dataset, Much better splits, a bit hard to
use



Why BELKA

BELKA in ConteXt Binding Datasets

e PubChem
» Substantial publication and sampling bias
Models latch onto dataset bias imit usefulness of data. Requires great care
instead of learning to tofilter data
generalize e BindingDB

» ~Im data points

o« o o » Better filters but still substantial problems
To limit bias, we wanted to LT bins. P

create a large dataset from a
single source/assay, without
preselecting compounds.



Why BELKA

Splitting in chemistry

Models latch onto memorizing
chemical motifs from training
set instead of learning to
generalize

Methods

e Random

e Scaffold

e Cluster based
¢ Building Block
e New Library



Why BELKA

Building Block Split

bb2

bb1
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Split so that no building
blocks are shared
between training set and
test set.

Many molecules are lost
with building block splits.



BELKA splits

Library Split
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BELKA split distributions

New Library

New Building Blocks
Training set



Metrics

Classification metrics

Accuracy
e Dataset Iis way too imbalanced

Average Precision
e Good method for testing model ability to rank

precision @ top 100
e closest to real life application
e perhaps too noisy for competition

We chose Average

Precision for
BELKA



Metrics - Lessons Learned

We chose Average Precision but made a mistake.

We calculated Average Precision over all groups together.
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After realizing this we changed the competition metric to be calculated for each (split, protein) group
separately and then averaged.


https://www.kaggle.com/hengck23

Kaggle results:
participant’s models
mostly memorize and

fail to generalize

KAGGLE CONTESTANTS
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TECHNIQUES TRIED

e ECFPs + tree based methods

» Good baseline, winning models did not outperform RF
by very much

e 1DCNNs

» Unexpected wins - Won § of b prizes

» High variance / Doesn't overfit as much
e BERT or RoBERTa based language models

» Competition workhorse

» Scales to full dataset
e GNNs, GraphConvs or MPNNs

» Contestants had trouble with scaling and overfitting
e Docking

» Not attempted much (due to cost)

» reports that docking score did not correlate with

binding

Winners were very careful on evaluating overfitting using
custom data splits

1



Approaches

Tree-based methods and ECFPs
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Basically Hashing trick on subgraphs. Learns which
chemical motifs correspond to binding.

Method can only memorize never generalize, but forms
a very robust baseline



Approaches

IDCNNs

Method really performed much better than expected.

Very good/popular tutorial released, which had high
variance.

This method didn't seem to overfit as much as other
methods.



Approaches

IDCNNSs
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Approaches

IDCNNSs
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Approaches

BERT/Mamba

Models are pre-trained with a masking task.

Fast to train and provides good embeddings.



Approaches

Graph Convs

Not many contestants use this method. Hard to scale
to 100m molecules.

Data preprocessing may have been prohibitive.



Approaches

Docking

Almost no one attempted Docking methods.
Too expensive to run docking on full validation set.

one group tried docking small sample and found no
correlation between docking score and binding.



Kaggle results:
participant’s models
mostly memorize
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KAGGLE CONTESTANTS
- Do well on motifs shared in the training set

e Do less well on non-shared motifs
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BELKA split distributions

New Library
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viewing the churn

Kaggle results: Shakeup
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@ Leash

THANK YOU

belka@leash.bio



