
NeurIPS 2024 LLM-Merging
A Model Merging Method

abc team

Jisheng Fang
asdfqwer2015@163.com

Hao Mo
sunshineinautumn@163.com

Qiang Gao
gq15035177217@gmail.com

content

01 Introduction

02 Model Selection

03 Model Merging

04 Conclusions and Outlook

05 Q&A

Introduction

Competition Goal

Training high-performing large language models (LLMs) from scratch is a notoriously

expensive and difficult task, costing hundreds of millions of dollars in compute alone.

These pretrained LLMs, however, can cheaply and easily be adapted to new tasks via

fine-tuning, leading to a proliferation of models that suit specific use cases. Recent

work has shown that specialized fine-tuned models can be rapidly merged to

combine capabilities and generalize to new skills.

Current Methods

• Parameter Averaging

• Model Stacking

• Model Routing

• MoE-based merging

• Model Zipping

Model Selection

Base Model Selection

• meta-llama/Meta-Llama-3-8B-Instruct

• broad knowledge

• skilled at summarizing

• ecologically rich

• microsoft/Phi-3-small-8k-instruct

• small and fast

• skilled at reasoning

Base Model Selection

• Task types by knowledge area

• assessing each fine-tuned model’s GPU memory

usage and accuracy by lm-evaluation-harness and

custom datasets

Model Merging

Model Merging

Weights Merging

Lower VRAM
requirements to

support a greater
number of models

Determine model
selection based on

sample analysis

Staged Response

Harness the distinct
advantages of multiple

base models

Router

Weights Merging

1. Compresses weights for layers (excluding the lm_head and embedding layers)

2. Applies RSVD

3. Connects parameter averaging and model routing

Weights Merging

Algorithm: Weight compression for a layer in models

Input:

𝑊 = 𝑊ଵ, 𝑊ଶ, … , 𝑊ே

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒

Output:

𝑠𝑐𝑎𝑙𝑒𝑠 = {𝑠𝑐𝑎𝑙𝑒ଵ, 𝑠𝑐𝑎𝑙𝑒ଶ, … , 𝑠𝑐𝑎𝑙𝑒ே}

W௔௩௚

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑖𝑓𝑓 = {𝑈ଵ, 𝑈ଶ, … , 𝑈ே, 𝑉ଵ, 𝑉ଶ, … , 𝑉ே}

1. For each weight matrix 𝑊௜ ∈ 𝑊:

𝑠𝑐𝑎𝑙𝑒௜ = 𝑊௜

𝑊෡௜ =
ௐ೔

௦௖௔௟௘೔

Normalize weight matrix 𝑊௜.

2. 𝑊௔௩ =
ଵ

ே
 ∑ 𝑊෡௜

3. For each normalized weight matrix 𝑊෡௜:

𝑈௜, 𝑉௜ = 𝑅𝑆𝑉𝐷(𝑊෡௜ − 𝑤௔௩௚, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒)

4. Return 𝑠𝑐𝑎𝑙𝑒𝑠, 𝑤௔௩௚, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑖𝑓𝑓

Algorithm: Inference for Compressed Model Layer

Input:

𝑥

𝑏𝑖𝑎𝑠 # Uncompressed bias

𝑠𝑐𝑎𝑙𝑒𝑠 = {𝑠𝑐𝑎𝑙𝑒ଵ, 𝑠𝑐𝑎𝑙𝑒ଶ, … , 𝑠𝑐𝑎𝑙𝑒ே}

W௔௩௚

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑖𝑓𝑓 = {𝑈ଵ, 𝑈ଶ, … , 𝑈ே, 𝑉ଵ, 𝑉ଶ, … , 𝑉ே}

Output:

𝑦 = {𝑦ଵ, 𝑦ଶ, … , 𝑦ே}

1. 𝑦௜ = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑤௔௩௚) + 𝑙𝑖𝑛𝑒𝑎𝑟(𝑙𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑉௜), 𝑈௜) ∗ 𝑠𝑐𝑎𝑙𝑒௜

2. If bias is not null:

𝑦௜ += 𝑏𝑖𝑎𝑠௜

3. Return y # Return the final output.

Weights Merging

1. 95% compression rate

2. Phi3-Small and three fully fine-tuned Llama3 8B models

Router

1. Embedding based

2. LLM instead of PLM

3. Alignment

Router

Alignment

‘’’{input}

Let’s think about what task these questions belong to. These questions belong to the

field of’’’

Staged Response

Accuracy and Clarity

2-agents, model stacking

Thinker: Phi3-small, guided COT

Formatter: llama3 8B

Conclusions and
Outlook

Conclusions and Outlook

We ultimately achieved first place with a score of 0.46

The Method with second version of Staged Response gets a higher
score of 0.50

Q&A

Q&A

If you have any questions, please feel free to email us.

Jisheng Fang
asdfqwer2015@163.com
Hao Mo
sunshineinautumn@163.com
Qiang Gao
gq15035177217@gmail.com

THANKS

