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Introduction



Competition Goal

Training high-performing large language models (LLMs) from scratch is a notoriously 

expensive and difficult task, costing hundreds of millions of dollars in compute alone. 

These pretrained LLMs, however, can cheaply and easily be adapted to new tasks via 

fine-tuning, leading to a proliferation of models that suit specific use cases. Recent 

work has shown that specialized fine-tuned models can be rapidly merged to 

combine capabilities and generalize to new skills.



Current Methods 

• Parameter Averaging

• Model Stacking

• Model Routing

• MoE-based merging

• Model Zipping



Model Selection



Base Model Selection

• meta-llama/Meta-Llama-3-8B-Instruct

• broad knowledge

• skilled at summarizing

• ecologically rich

• microsoft/Phi-3-small-8k-instruct

• small and fast

• skilled at reasoning



Base Model Selection

• Task types by knowledge area

• assessing each fine-tuned model’s GPU memory 

usage and accuracy by lm-evaluation-harness and 

custom datasets



Model Merging



Model Merging

Weights Merging

Lower VRAM 
requirements to 

support a greater 
number of models

Determine model 
selection based on 

sample analysis

Staged Response

Harness the distinct 
advantages of multiple 

base models

Router



Weights Merging

1. Compresses weights for layers (excluding the lm_head and embedding layers)

2. Applies RSVD

3. Connects parameter averaging and model routing



Weights Merging

Algorithm: Weight compression for a layer in models

Input:

𝑊 = 𝑊ଵ, 𝑊ଶ, … , 𝑊ே

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒

Output:

𝑠𝑐𝑎𝑙𝑒𝑠 =  {𝑠𝑐𝑎𝑙𝑒ଵ, 𝑠𝑐𝑎𝑙𝑒ଶ, … , 𝑠𝑐𝑎𝑙𝑒ே}

W௔௩௚

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑖𝑓𝑓 = {𝑈ଵ, 𝑈ଶ, … , 𝑈ே, 𝑉ଵ, 𝑉ଶ, … , 𝑉ே}

1. For each weight matrix 𝑊௜  ∈  𝑊:

𝑠𝑐𝑎𝑙𝑒௜  =  𝑊௜

𝑊෡௜ =  
ௐ೔

௦௖௔௟௘೔

# Normalize weight matrix 𝑊௜.

2. 𝑊௔௩  =
ଵ

ே
 ∑ 𝑊෡௜

3. For each normalized weight matrix 𝑊෡௜:

𝑈௜, 𝑉௜  =  𝑅𝑆𝑉𝐷(𝑊෡௜  −  𝑤௔௩௚, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒)

4. Return 𝑠𝑐𝑎𝑙𝑒𝑠, 𝑤௔௩௚, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑖𝑓𝑓

Algorithm: Inference for Compressed Model Layer

Input:

𝑥

𝑏𝑖𝑎𝑠 # Uncompressed bias

𝑠𝑐𝑎𝑙𝑒𝑠 =  {𝑠𝑐𝑎𝑙𝑒ଵ, 𝑠𝑐𝑎𝑙𝑒ଶ, … , 𝑠𝑐𝑎𝑙𝑒ே}

W௔௩௚

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑑𝑖𝑓𝑓 = {𝑈ଵ, 𝑈ଶ, … , 𝑈ே, 𝑉ଵ, 𝑉ଶ, … , 𝑉ே}

Output:

𝑦 = {𝑦ଵ, 𝑦ଶ, … , 𝑦ே}

1. 𝑦௜  =  𝑙𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑤௔௩௚)  +  𝑙𝑖𝑛𝑒𝑎𝑟(𝑙𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑉௜), 𝑈௜)  ∗  𝑠𝑐𝑎𝑙𝑒௜

2. If bias is not null:

𝑦௜  +=  𝑏𝑖𝑎𝑠௜

3. Return y  # Return the final output.



Weights Merging

1. 95% compression rate

2. Phi3-Small and three fully fine-tuned Llama3 8B models 



Router

1. Embedding based

2. LLM instead of PLM

3. Alignment



Router

Alignment

‘’’{input}

Let’s think about what task these questions belong to. These questions belong to the 

field of’’’



Staged Response

Accuracy and Clarity

2-agents, model stacking

Thinker: Phi3-small, guided COT

Formatter: llama3 8B



Conclusions and 
Outlook



Conclusions and Outlook

We ultimately achieved first place with a score of 0.46

The Method with second version of Staged Response gets a higher 
score of 0.50



Q&A



Q&A

If you have any questions, please feel free to email us.

Jisheng Fang
asdfqwer2015@163.com
Hao Mo
sunshineinautumn@163.com
Qiang Gao
gq15035177217@gmail.com
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