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One of the most valuable tools in modern farming is hyperspectral 
imaging (HSI) [1], a technology that allows for a detailed analysis 
of crop health. HSI extends beyond the capabilities of conventional 
imaging by capturing a wide range of spectral wavelengths, 
including those outside the visible spectrum. This technology 
generates a three-dimensional (3D) data structure called a 
hyperspectral cube (Figure 1) – a stack of images, each 
corresponding to a specific wavelength – enabling detailed analysis 
of plant characteristics and early detection of crop issues such as 
nutrient deficiencies, diseases, and stress markers. However, the 
application of machine learning (ML) to analyze HSI data is limited 
by the scarcity of diverse datasets. Challenges include the high costs 
of HSI equipment, logistical difficulties in data collection, and 
maintaining standardized acquisition conditions. This research 
investigates deep generative models as a solution to augment HSI 
datasets and improve the performance of ML models in agricultural 
analysis.

Figure 1. The hyperspectral cube
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This research aims to address the challenges associated with the 
scarcity of HSI datasets by exploring the use of deep generative 
models to augment spectral data. The objectives are the following:

• To evaluate the performance of several generative models, 
including a customized variational autoencoder (VAE) [2], deep 
convolutional generative adversarial networks (DCGAN) [3], 
and Wasserstein GAN with gradient penalty (WGAN-GP) [4], in 
generating synthetic HSI data. 

• To compare the quality, variability, and representativeness of the 
augmented data from these generative models to a conventional 
noise addition approach. 

In this research, we utilized a hyperspectral dataset of Buttercrunch 
lettuce under varying nitrogen stress levels, captured using the 
SPECIM FX10 camera [5]. From the 404 captured images, 104 
samples were chosen for data augmentation, representing plants 
grown with a full standard dose of nitrogen (operates within a 
spectral range of 400 to 1000 nm). Algorithm 1 was employed for 
preprocessing, which included data calibration and addressing 
negative values, while Algorithm 2 (adapted from a method in [6]) 
was used for segmentation to identify key regions of interest. A 
sample result of the segmentation process is shown in Figure 2, and 
the entire normalized dataset is visualized in Figure 3.

The comparison of augmentation techniques highlights that additive noise ensures high accuracy in preserving the original 

data distribution but offers limited diversity, making it suitable for maintaining core data characteristics. In contrast, VAE 

introduces greater diversity at the cost of data consistency, whereas DCGAN achieves a balance between the two, offering 

moderate variability with alignment to the original data distribution. While quantitative metrics provide valuable insights, 

their practical relevance must be validated through downstream tasks such as classification or regression. Building on our 

findings with deep generative models for spectral data augmentation, future work will focus on integrating spatial information 

from hyperspectral cubes to capture the full spectral-spatial dependencies of plant data. To achieve this, we propose 

leveraging transformer-based architectures in combination with diffusion models to generate high-quality synthetic 

hyperspectral data that accurately represents both spectral and structural characteristics.

Additive noise:  Data + 𝑁(0, 𝜎2)

Figure 2. Segmentation process.

Figure 3. Normalized spectral signatures

A Customized VAE

Multiplicative noise: Data × exp(𝑁(𝜇, 𝜎2))

Performance Comparison of Data Augmentation Techniques

Metric Additive Noise Multiplicative Noise VAE WGAN-GP DCGAN

Cosine Similarity 0.9972 0.9972 0.9985 0.9974 0.9985

Jensen-Shannon Divergence 0.0052 0.0132 0.1908 0.0652 0.0359

KL Divergence 0.0001 0.0007 0.2194 0.0163 0.0053

Nearest Neighbor Distance 0.0149 0.0495 0.1488 0.3759 0.1539
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