Overcoming Data Scarcity in Digital Agriculture: A Generative
Approach to Hyperspectral Imaging
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One of the most valuable tools in modern farming is hyperspectral [ Additive noise: Data+ N(0,02) J [I\/Iultiplicative noise: Data x exp(N(u, 02)) ]
Imaging (HSI) [1], a technology that allows for a detailed analysis
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of crop health. HSI extends beyond the capabilities of conventional S —— T N E———
imaging by capturing a wide range of spectral wavelengths, . /- — ~ st
Including those outside the visible spectrum. This technology | |
generates a three-dimensional (3D) data structure called a Eo 206
hyperspectral cube (Figure 1) — a stack of images, each . g
corresponding to a specific wavelength — enabling detailed analysis
of plant characteristics and early detection of crop issues such as o o
nutrient deficiencies, diseases, and stress markers. However, the 00 — 00 —
application of machine learning (ML) to analyze HSI data is limited ° > Woesength @ands) 200 ’ 0 Wac e e = 200
by the scarcity of diverse datasets. Challenges include the high costs PCA of Original and Additive Noise-Augmented Data PCA of Original and Multiplicative Noise-Augmented Data
of HSI equipment, logistical difficulties in data collection, and | o Nenoneous .
maintaining standardized acquisition conditions. This research Sl eget Tl R N R o
Investigates deep generative models as a solution to augment HSI 2 R R 2 e e
datasets and improve the performance of ML models in agricultural o I T S L. o SO
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Figure 1. The hyperspectral cube
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This research aims to address the challenges associated with the . - T e
scarcity of HSI datasets by exploring the use of deep generative o - 3 . .
models to augment spectral data. The objectives are the following: h i 5] s g .
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« To evaluate the performance of several generative models, gEETET EOg RN AR SR R LR
Including a customized variational autoencoder (VAE) [2], deep et T R N
convolutional generative adversarial networks (DCGAN) [3], - m— | o oratoms
and Wasserstein GAN with gradient penalty (WGAN-GP) [4], In _— S B :
generating synthetic HSI data. S
To compare the quality, variability, and representativeness of the [ DCGAN J [ WGAN-GP ]
augmented data from these generative models to a conventional
nOiSG addItIOn approaCh . BEcANIGenammtediSAmples — Samples of augmented data using WGAN-GP
In this research, we utilized a hyperspectral dataset of Buttercrunch 08
lettuce under varying nitrogen stress levels, captured using the oo
SPECIM FX10 camera [5]. From the 404 captured images, 104 |
samples were chosen for data augmentation, representing plants °‘ =0 [
grown with a full standard dose of nitrogen (operates within a o2 | } /
spectral range of 400 to 1000 nm). Algorithm 1 was employed for ¥ TN 4
preprocessing, which included data calibration and addressing ; : E B % oG 20
negatlve Values1 Whlle Algorlthm 2 (adapted from d methOd In [6]) DCGAN: PCA of Generated vs Original Samples WGAN-GP: PCAofGener;ted vs Original Samples
was used for segmentation to identify key regions of interest. A o o Resamies o o Original Samples
- . . - 0.6 1 s ? @ Generated Samples | ° @ Generated Samples
sample result of the segmentation process is shown in Figure 2, and e em 2,
the entire normalized dataset is visualized in Figure 3. . R ’ 00{
Algorithm 1 Preprocess hyperspectral data N ;. ’ . e ’ : . w 0754 :
1: Start g 027 ¢ e ° ; ¢ o0 ,®
2: Read “.raw” data 8 o ® ® °e ® ° e 050 {% :
3. Convert “.raw™ data to 3D array E o o’ ® . ® ¢ ® ® : £ oo ee e
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Algorithm 2 Leaf segmentation from hyperspectral data using NDVI and EGI . ° e % .« *°, ~0.25 4 * % '%;6%%.“ ° %: e % @
l: Inmput: Hyperspeciral image data b ® ® —0.50 | ; ¢ {}i
2: Output: Segmented leaf areas along all bands . . . . . . . . . ' . . . . . . . . .
3: Calculate mean across spectral bands for Blue (bands 1 — 38) 08 —04 —0.2 0.0 e Comuinentl L3 Ll AL = 0.6 -0.4 0.2 0.0 0.2 0.4 0.6 0.8 10
4: Calculate mean across spectral bands for Green (bands 39 — 76) ? L
5: Calculate mean across spectral bands for Red (bands 77 — 114)
6: Calculate mean across N]I:'. spectral bands (bands 115+) ) : _
7 Compute NDVI for cach pixel: NIR - Red Performance Comparison of Data Augmentation Technigues
NDVE= NIR T Red
8: Compute EGI for each pixel: ) oL ) ) ) ) )
EGI = 2 x Green — Blue — Red Metric Additive Noise  Multiplicative Noise  VAE  WGAN-GP DCGAN

9: Create binary masks based on thresholding NDVI and EGI

10: Element-wise multiplication of NDVI and EGI masks using thresholding to form the primary mask

11: Morpholoegical Operations: . .. .

12: Apply morphological closing using a 3 = 3 structuring element COS' ne Sl mi Iarlty 0 9972 O 9972 09985 O 9974 O 9985
13: Apply morphological opening using a 3 x 3 structuring element

14: Extract and output the final segmented leaf areas

165 s sefore kg egetaton sk R Jensen-Shannon Divergence 0.0052 0.0132 0.1908 0.0652 0.0359
KL Divergence 0.0001 0.0007 0.2194 0.0163 0.0053
Nearest Neighbor Distance 0.0149 0.0495 0.1488  0.3759  0.1539
. . B Discussion and Future Work B
T e - o Beetie ™ The comparison of augmentation techniques highlights that additive noise ensures high accuracy in preserving the original
Figure 2. Segmentation process. data distribution but offers limited diversity, making it suitable for maintaining core data characteristics. In contrast, VAE
Visualization of All Normalized Samples Introduces greater diversity at the cost of data consistency, whereas DCGAN achieves a balance between the two, offering
| | moderate variability with alignment to the original data distribution. While quantitative metrics provide valuable insights,
g 08- their practical relevance must be validated through downstream tasks such as classification or regression. Building on our
: ol findings with deep generative models for spectral data augmentation, future work will focus on integrating spatial information
g from hyperspectral cubes to capture the full spectral-spatial dependencies of plant data. To achieve this, we propose
¥'§°-4- leveraging transformer-based architectures in combination with diffusion models to generate high-quality synthetic
2 hyperspectral data that accurately represents both spectral and structural characteristics.
. References

6 5'0 1(30 150 2(')0
_ _ Bands _ [1] https://doi.org/10.1016/j.atech.2023.100316 [4] https://doi.org/10.48550/arXiv.1704.00028

Figure 3. Normalized spectral signatures [2] https://doi.org/10.48550/arXiv.1312.6114 [5] https://hdl.handle.net/10680/2127
[3] https://doi.org/10.48550/arXiv.1511.06434 [6] https://doi.org/10.3389/fpls.2018.01182




	Slide 1

