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INTRODUCTION

Suicide is a mental health issue mainly cause by
individual (eg mental illness, truma), social (eg
stigma, use of media) or situational (bullying,
drugs/alcohol) factors (Saxena et al., 2014). The
ICIR research shows the rate of suicide in six
countries showing the importance of early suicide
detection (Fig 1).

Detecting suicide ideation in victim is primarily
the task of the mental health practitioners. Due to
access to internet by diverse people in ideating
their minds which create vast amount of dataset
on social media, Machine Learning researchers
joined the mental health professionals to combat
suicide.

Ability to predict suicide ideation can be crucial in
preventing tragic outcomes. The aim of this
research is to develop an enhanced suicide
ideation prediction model by exploring and
optimizing combinations of word embeddings
(Word2Vec, FastText, and GloVe), classifiers
(CNN-BILSTM) and datasets (Aldhyani et al.,
2022; Ghosh et al., 2022).

Two datasets were used in this study, the publicly

available Reddit dataset (Aldhyani et al, 2022)
which comprises of balance classes (suicidal or
non-suicidal) and Suicide Note (Ghosh et al,
2022), which comprises of imbalanced dataset.

The first dataset which was mainly used for model
building, the suicidal text comprises of more
negative words and has uniform distribution.
While the non-suicidal text comprises of neutral
and positive words, and rightly skewed. The
second dataset was used in carrying out cross-
dataset testing.

The both datasets were preprocessed by carrying
out lowercasing, remove special characters and
stop words, tokenization, sequence padding and
text encoding.

The first experiment, Word2Vec, FastText and
GloVe embeddings were used, three models were
built. The CNN-BIiLSTM architecture used can be
viewed in fig. 5 and the implemented model in
fig. 6. The model was trained with 64 batch size
and 5 epoch.

The second experiment, the best model from the
first experiment was further tested with the second
dataset.
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RESULT ANALYSI DISCUSSION |

The accuracy, precision, recall and F1 Score of CNN-
BiLSTM model built with Word2Vec word embedding
had 94%, 90%, 90% and 90%, respectively. The
model built with FastText had 94% for the four
evaluation metrics. And the model built with GloVe
had 93% accuracy and 94% for the t metrics.
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Fig. 6: Model Implementation
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NCLUS

The loss curve for each of these model can be viewed
from Fig. 2, 3 and 4, showing convergence and no
overfitting.

Using F1 score, the model built with FastText and
Glove, both had 94% but FastText outperformed
GloVe in the other evaluation metrics. The model with
FastText was used to proceed to the second
experiment. As predicted, the model couldn’t perform
well on the second dataset which is the suicide note.

Comparing our study with earlier model where this
study is extended from (Aldhyani et al., 2022),
achieved an F1 score of 95%, overfitting was noticed.
But from their second experiment, they achieved 84%
F1 score after combatting the overfitting. Our three
models which do not overfit outperformed theirs.
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