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Finding Real Uncertainties

From Lensing Simulations
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Strong Lensing: Galaxies Bend Light, Creating Arcs

A galaxy can bend light
from one right behind it

The background galaxy
light is sheared

Making arcs around the

foreground galaxy

Credit: NASA, ESA, and Goddard Space Flight Center/K. Jackson
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New Telescopes Will Find Over 10° Similar Systems

Modeling these lenses can:

Offer a magnified (lensed) view of small, far-away galaxies

f Test the expansion rate of the universe, by measuring distances

\
’}7(\4 Study how dark matter is structured around galaxies
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The Challenge of Uncertainties: Simulation-Trained NN

Methods to Get Uncertainties on Simulation-Trained NNs
theta_E - Need to make simulations tuned
MC Dropout carefully to the real data

Bayesian Neural Networks Real data may have quirks that are hard

to simulate
Deep Ensembles

This discrepancy is a “domain shift”

Mean and Variance Estimation (MVE)

Complex Noise? Artifacts?

Simulated

>
Data . .
Range of Parameters? Domain Shift




An Example: From Simulations to Reality

How can we make sure neural networks are learning with the right features from

simulated data?

If | train on this...
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An Example: From Simulations to Reality

How can we make sure neural networks are learning with the right features from

simulated data?

If | train on this... Can | predict on this? How about this?

DELJ084032-093115
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To Get Around This, We Use Domain Adaptation

Train the network while finding invariants between the training (source) dataset

and prediction (target) dataset.
Before Domain After Domain
Adaptation Adaptation

Source
(Simulated Data
w/ Labels)

These representations
containing invariant and
relevant features are

“latent embeddings”.

This process is Unsupervised! DELI034032-093115

-
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Maximum Mean Discrepancy (MMD)

Source Latent
Embedding

Target Latent
Embedding

Unsupervised: MMD can be calculated without any labels!

I

—
LMMD

MMD tests how

aligned the two
datasets are

MMD is effectively a multi-
dimensional distance aggregated

between sets of vectors

If the MMD is large, datasets are

separate

If the MMD is small, datasets are
aligned

We optimize to reduce MMD by
including it in the loss function
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How About Predicting Uncertainties!

We can calculate aleatoric uncertainties using the beta negative log-likelihood as

our loss function.

L NLL i= XI?Iy[L&”(X) | (%10g&2(X) Y = i X))” const)}

262(X)
; %
Re-Weighti N tive Log-Likelihood
A COAINE HOgTHEEINOOT  Seitzer et. al 2022)
B varies the loss to O —— ﬁ —_— 1

weight accuracy
vs. calibration.

Mean'squared —— L — Negative
error ﬁ NLL Log-Likelihood
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The Domain-Adapted UQ Model

'

100K Labeled Source Images (w/ 6 labels)

‘

100K Unlabeled Target Images

CNN

Note: No
labels of the
target dataset
required!
Fully Connected
Layers

q — HEI O-HE
Regression Outputs
> LN
> L ymp
Source Labels

[ Total Loss = L gy + WL yyp
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Model Results

MVE-only (Not Adapted)
Vs.
MVE-UDA (Domain-Adaptive)
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Alignment of Latent Embeddings w/ Domain Adaptation

Isomaps show dimensionally-reduced form of latent embeddings, while

preserving distances. Adaptation aligns embeddings in latent space.

MVE-Only MVE-UDA

YA A A
® | X A Source

o Target
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1.25

No Adaptation w/ Adaptation
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MVE-only Model Inconsistent

MVE-Only on SOURCE Dataset A MVE-Only on TARGET Dataset
/\
-
Trained on Trained on
|
|
i
H
Predicting on - Predicting on
'
H
|
1.51 y
Performs well, as expected. o Poorly calibrated & inaccurate.
-
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1.0
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MVE-UDA Model Consistent

MVE-UDA on SOURCE Dataset MVE-UDA on TARGET Dataset

Trained on Trained on

Predicting on Predicting on

Well calibrated, accurate. Maintains accuracy, calibration.
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Comparing Performance on Target Datasets

MVE-Only on TARGET Dataset MVE-UDA on TARGET Dataset
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All Mean and Variance

Predictions
All models trained on g
the source dataset .

MVE-only model inconsistent on

source vs. target

MVE-UDA model consistent

across source and target

MVE-UDA is more accurate and

calibrated than the target

Model variances are higher at

edges of distribution

eE,true (")

MVE-only,
Source

MVE-only,
Target

MVE-UDA,
Source

MVE-
Target

UDA,

| £

-

Estimated
Uncertainties

AT o0 o 920 o7 920 o 90 o2

eE, pred

- 6E,true (")

Q’L Q’L Q’L

pe A€
O (' 2)O




MVE-UDA allows well-

calibrated uncertainty on
domain-shifted data.

The MVE-only model is significantly
overconfident on the target dataset

These results hold across varying
seed initializations (faded lines)

Fraction Within Interval

MVE-only, MVE-only, MVE-UDA, MVE-UDA,
Source Target Source Target

- -o- o -e-

1.0

0.8 -

0.6 1

0.4 -

0.2

0.0

0.0

Underconfident

Overconfident

Confidence Level

0.4

0.6

0.8
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Conclusions

On target (noisy) data, we found that the DA model
Was more accurate than the MVE-only model
Was significantly better calibrated than the MVE-only model

Was more consistent across varying weight initializations, MVE-only was unpredictable

DA performs slightly worse on training (source) data, to trade-off for better performance on

target data

This scheme of DA + UQ is a general concept that can be applied beyond strong lensing.
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Table 1: Prior distributions of the simulation parameters for training and test sets.

Parameter Prior
Lens light profile
Einstein radius 0r () 14(1.0,3.0)
Sérsic index n U(2.0,5.0)
Scale radius R (" 14(1.0,2.5)
Eccentricity {ei1,e12} U(—0.2,0.2)
External shear {v1,v2} U(—-0.05,0.5)
Source light profile
Sérsic index n U(2.0,4.0)
Scale radius R (" 14(0.5,1.0)
Eccentricity {es,1,es,2} U(—0.2,0.2)

Relative angular positions {z,y} () U (—0.5,0.5)
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Table 3: The architecture of the MVE network. The first column lists the layer type, the second lists
the dimensionality of the output from that layer, and the third column lists the parameters of that
layer; k is the kernel size, and s is the stride. The final layer outputs the mean and variance.

Layer Output shape Parameters
Conv2d [-1,8,40,40] k=3,5=1
BatchNorm2d [-1,8,40,40] k£=3,s=1
MaxPool2d [-1,8,20,20] k=2,s=2
Conv2d [-1,16,20,20] k=3,s=1
BatchNorm2d [-1,16,20,20] k=3,s=1
MaxPool2d [-1,16,20,20] k=2,5=2
Conv2d [-1,32,10,10] k=3,s=1
BatchNorm2d [-1,32,10,10] £=3,s=1
MaxPool2d [-1,32,5, 5] k=2,s8=2
Linear [-1, 128] -
Linear [-1, 32] -
Linear [-1, 2] -
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Table 4: Mean residual {60g), mean aleatoric uncertainty (o,), mean correlation coefficient (R?),
and mean NLL loss (£s_nr1) across each data set for each model, MVE-only, MVE-UDA.

MVE-only MVE-UDA
Metric Seed | Source Target Source Target
Residual: (60g) 56 0.0164 0.0693 0.0358 0.0436

11 0.0149 0.0287 0.0389 0.0425
31 0.0201 0.0585 0.0386 0.0461
6 0.0150 0.0818 0.0484 0.0510
63 0.0174 0.0240 0.0452 0.0551

Uncertainty: {0,)) 56 | 0.0243 0.0253 0.0489  0.0503
11 | 0.0180 0.0179 0.0602  0.0599
31 | 0.0269 0.0239 0.0634  0.0634
6 0.0192 0.0199 0.0678  0.0678
63 | 0.0203 0.0205 0.0628  0.0628

Correlation: (R?) 56 | 0.9986 0.9642 0.9924  0.9835
11 | 0.9988 0.9939 0.9917  0.9897
31 | 0.9979 0.9727 0.9922  0.9886
6 0.9988 0.9418 0.9880  0.9861
63 | 0.9984 0.9968 0.9889  0.9832

NLL Loss: (Ls_nrL) | 56 | —3.3603  4.5586  —2.6600 —2.4204
11 | —3.4737 —1.0705  —2.5098 —2.4385
31 | —3.1443 15503.4180 —2.4316 —2.2854
6 | —3.4925  25.4278  —2.2687 —2.2070
63 | —3.2745  —2.6643 —2.2982 —2.0623
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