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Aleatoric uncertainty is important in many physics and astrophysics
applications, i.e., Poisson or Gaussian noise in astrophysics
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Deep learning or non deep learning methods should predict
uncertainties that match these known distributions
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Gen Al image

I’m not sure what this is.
My range of possible
classifications includes
‘dog’ and ‘cat’ because
this data is very noisy.



On a scale of 1 to 10,
this cat has an average
cuteness of 8; the
uncertainty on this

estimate is +/- 2.
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Mean variance estimation networks (MVEs) predict aleatoric
uncertainty via their two output nodes (mean and variance)




The aleatoric uncertainty for a Deep Ensemble (of many
MVES) is the average of the predicted standard deviations




Deep Evidential Regression predicts aleatoric uncertainty
using a normal-inverse-gamma loss
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Deep Evidential Regression predicts aleatoric uncertainty
using a normal-inverse-gamma loss
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Deep Evidential Regression predicts aleatoric uncertainty
using a normal-inverse-gamma loss

distribution distribution
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Deep Evidential Regression predicts aleatoric uncertainty
using a normal-inverse-gamma loss
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Scientific data " Deep learning

Gen Al image



Other work offers comparisons of different UQ techniques

Compare aspects of predictive uncertainty distributions (but not the exact uncertainty value):
Scalia et al. 2019 “Evaluating Scalable Uncertainty Estimation Methods for DNN-Based Molecular
Property Prediction.”

Tran et al. 2019 “Methods for comparing uncertainty quantifications for material property predictions.”

A toolbox for comparing UQ methods (but not the exact uncertainty value):
Chung et al. 2021 “Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving
Uncertainty Quantification.”

Compares exact aleatoric uncertainties (but not for a variety of data types):
Caldeira & Nord 2020 “Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep
Learning Algorithms.”

Uses a variety of data types and uncertainty injection (but does not compare exact uncertainty
values):
Bramlage et al. 2023. “Plausible uncertainties for human pose regression”



Uncertainty Menu

To generate the 12 total experimental datasets, there are three
categories.
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Uncertainty Menu

To generate the 12 total experimental datasets, there are three

categories.
Injection Dimensionality Noise level
Output variable 0D: Tabular Low (o, = 0.01)
Input variable 2D: Imaging Medium (o, = 0.09)

High (o, = 0.1)



Uncertainty Menu

Below | show two options for selecting from each category.

Injection Dimensionality Noise level
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Uncertainty Menu

Below | show two options for selecting from each category.

Injection Dimensionality Noise level
Output variable 0D: Tabular Low (o, = 0.01)
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o,=0.1 0x=0.003-0,=0.1
24 -(a)

1.5 A

> 1.0 - | use DeepBench

to generate the
galaxy images.

0.5 A

0.0




Uncertainty Menu

For uncertainty on the input variable, | inject the uncertainty
directly on the input and propagate it to the output variable.

Injection Dimensionality Noise level
Output variable 0D: Tabular Low (o, = 0.01)
Input variable 2D: Imaging Medium (o, = 0.09)
High (o, = 0.1)
o,=0.1 0x=0.003-0,=0.1
2.01(3) y
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The uncertainty is injected for all data via a homoskedastic
Gaussian distribution
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i.e., the uncertainty is added to each pixel via a draw from a
random normal with standard deviation Oy = 0.1



Uncertainty Menu

Below | show two options for selecting from each category.

Injection Dimensionality Noise level
Output variable 0D: Tabular Low (o, = 0.01)
Input variable 2D: Imaging Medium (o, = 0.09)
High (o, = 0.1)
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Deep Ensemble (DE)
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5 out of 12 experiments are miscalibrated
for the Deep Ensemble

Deep Ensemble (DE)

Low Noise !
m— Medium Noise/A\ A
. = High Noi /)
OD, output| o g Nalse : —h
OD, input jé% ‘ |

2D, output : o i ,
\\

2D, input —o0 A ™ i
0.01 0.05 0.1
Predicted Aleatoric Uncertainty, oy

?




5 out of 12 experiments are miscalibrated
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5 out of 12 experiments are miscalibrated
for the Deep Ensemble
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10 out of 12 experiments are miscalibrated
for the Deep Evidential Regression

Deep Evidential Regression (DER)
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Both models are overconfident in most experiments; the
Deep Evidential Regression is slightly worse




This problem is worse for higher dimensional (images) and
higher noise datal!




Caveat: All the results presented here apply only to the
(simplistic) set of experiments
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Real world data can be even messier and more uncertain

Credit: Science: NASA, ESA, CSA,
Tommaso Treu (UCLA); Image
Processing: Zolt G. Levay (STScl)

Collision Event at
7 TeV

GATLAS
_iEXPERIMENT

2010-03-30, 12:58 CEST
Run 152166, Event 316199

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

ATLAS Collaboration, CERN
Particle data are in tabular format



Conclusion: Scientific imaging and other datasets offer a
great opportunity to test UQ methods (DE and DER); we find
that they are mostly miscalibrated in aleatoric uncertainty

prediction for this set of experiments.
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Conclusion: Scientific imaging and other datasets offer a
great opportunity to test UQ methods (DE and DER); we find
that they are mostly miscalibrated in aleatoric uncertainty

prediction for this set of experiments.
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Bonus slides



Concerns for the field of UQ:

e Taxonomies are confusing/conflicting, how
do we define different types of
uncertainties? Aleatoric, epistemic, oh my!

e Independence of uncertainty types should be questioned
(is aleatoric independent from epistemic? Is there more
overlap that we’re currently considering?)

e Are notions of uncertainty in physics/astronomy/science
aligning with the deep learning science on uncertainty
quantification”? What work is to be done?



What do we need?

e Standardized datasets with known uncertainties to test
the performance of these UQ methods

e "More complex versions of this

e Expanding this sort of work to epistemic uncertainties



2D Data
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Fully connected layer architecture is simple




The CNN architecture adds convolutional
layers on top of the existing MLP
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Feature extraction via Prediction .
convolutional layers y ~ N(u,0°)



