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The Interplay Between Theory/Models and Data
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in the Form of Simulators
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@ Physics-based simulator as a causal (mechanistic) model that
encodes the data-generating process 6 —= &, where 8 € © are
internal parameters that determine measurable data & € X
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Taxonomy ot Different Types of Simulators
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How Do We Test or Constrain Our Theory/Model Given Data?

“Labeled” data {6, 2,}2_, from either _

B Simulate (61, D), (02,Ds),...,(05,Dp),

) Simulator implicitly encoding £ (<; 0) where 6; ~ 7(0), Di = {Xi Xin) ~ Fy
or 1 ) T 1,1y oy £Xn i

i) Observational study with “precise" labels

@ from auxiliary measurements

v

Infer internal parameters/labels of interest
with measures of uncertainty.
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One more note: the number of events can be small ...

How Do We Test or Constrain Our Theory/Model Given Data?

“Labeled” data {6;, D,}5. . from either _
Simulate (91, Dl), (92, DQ), (HB, DB

) Simulator implicitly(/)rencodlng ZL(;0) where 6; ~ 7(6), D; = {Xz,h y X@ ~ Fy
i) Observational study with “precise" labels

@ from auxiliary measurements

v

Infer internal parameters/labels of interest
with measures of uncertainty.

0.96 7 KV450 . o .
DES-Y1 (original n(z), KV450 setup) N - In standard frequentist statistics, n is large.
0.88 - DES-Y1 (original) -~ Typical for HEP collider experiments

- Planck 2018

- There are also many applications (in e.g.
astronomy) where n is small.

- E.g. n=1 — single observation x from 6*
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How Do We Test or Constrain Our Theory/Model Given Data?
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Some examples (all local parameters):

Energy=3.2 TeV

Energy of '
subatomic particle 0’0

150,
000000
aaaaa

Identity, orientation and energy
of cosmic-ray showers

Stellar labels h :
(e.g., mass, age, composition) i _ /v \ I
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Slide credit: Luca Masserano



Complex Scientific Inference is Often “Likelihood-Free”

Z(2;0) Data
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O Suppose we have knowledge of data-generating process 6 —» & e.g. via a “high-fidelity simulation”

----—

O But likelihood is intractable: e.g, p(x | 0) = Jp(x | 2)p(z | @)dz, where 7z are latent variables

O Inference (inverse problem) is hard: given new D = {xl"bs, ...,x,‘jbs}, use {6, Di}?=1 to infer parameters 0*




Complex Scientific Inference is Often “Likelihood-Free”
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O Suppose we have knowledge of data-generating process 8 —» & e.g. via a “high-fidelity simulation”
O But likelihood is intractable: e.g, p(x | 0) = Jp(x | 2)p(z | @)dz, where 7z are latent variables

---—

O Inference (inverse problem) is hard: given new D = {xl"bs, ...,x,‘,fbs}, use {6, Di}?=1 to infer parameters 0*

O Assumptions in our work regarding the data-generating process:

1. Likelihood Z(92; 0) does not change between training and inference: no unaccounted-for model
uncertainties

2. “Prior” m, (i.e., how we observe train data across the parameter space) could be poorly designed

Slide credit: Luca Masserano




Complex Scientific Inference is Often “Likelihood-Free”
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Predictive Approach Can Be Very Powerful, But
One Needs to Correct for Bias

[with Luca Masserano, Tommaso Dorigo, Rafael Izbicki and Mikael Kuusela]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV.

Energy=655.69965 GeV
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Figure 4: Muon entering the calorimeter in z direction.

[Kieseler et al., July 2021 arXiv:2107.02119]

{(917 Xl)? (927 X2)7 cee (eBa XB)}? where ¢ ~ T(9)7 X‘H ~ F9
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Figure 9: 2D histogram of uncorrected
kNN prediction versus true energy for test
data.

corr. [GeV]

EPred

Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test
data.
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Source: Dorigo et al 2020.

Slide credit: Luca Masserano
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Averting A Crisis In Simulation-Based Inference

Similarly, posteriors do not guarantee coverage of

internal parameters (often “over-confident”)
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Abstract

We present extensive empirical evidence show-
ing that current Bayesian simulation-based
inference algorithms are inadequate for the fal-
sificationist methodology of scientific inquiry.
Our results collected through months of ex-

perimental computations show that all bench-

marked algorithms — (S)NPE, (S)NRE, SNL
and variants of ABC — may produce overconfi-

Antoine Wehenkel
University of Liege
antoine.wehenkel@uliege.be

dent posterior approximations. which makes

them demonstrably unreliable and dangerous
if one’s scientific goal is to constrain param-

eters of interest. We believe that failing to
address this issue will lead to a well-founded
trust crisis in simulation-based inference. For
this reason, we argue that research efforts
should now consider theoretical and method-

Arnaud Delaunoy*
University of Liege
a.delaunoy@uliege.be

Gilles Louppe
University of Liege
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evaluation requires the often intractable integration of
all stochastic execution paths. In this problem setting,
statistical inference based on the likelihood becomes
impractical. However, approximate inference remains
possible by relying on likelihood-free approximations
thanks to the increasingly accessible and effective suite
of methods and software from the field of simulation-
based inference (Cranmer et al., 2020).

While simulation-based inference targets domain sci-
ences, advances in the field are mainly driven from a
machine learning perspective. The field, therefore, in-
herits the quality assessments (Lueckmann et al., 2021)
customary to the machine learning literature, such as
the minimization of classical divergence criteria. De-
spite recent developments of post hoc diagnostics to
inspect the quality of likelihood-free approximations
(Cranmer et al., 2015; Brehmer et al., 2018, 2019; Her-
mans et al., 2021; Lueckmann et al., 2021; Talts et al.,

https://arxiv.org/abs/2110.06581



https://arxiv.org/abs/1911.11089

Ex: Credible Regions from Neural (NF) Posteriors
D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1

Parameter Reaions Coverage Diaanostics
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Blue contours: 95% credible regions from Normalizing Flows
(overly confident when prior is. mismatched with true parameter)




How about Frequentist LFI Approaches?

DES collaboration, Abbott+17

KiDS, Joudaki+17
0550 (wcow) Robust coverage guarantees under

Planck 2015 (wCDM) N
KiDS (ACDM) ---

A shifting priors (for all 6, and for finite n)?

Ppig (9 c fz(D)) —1—a, Y9cO

@ Frequentist approaches (that estimate likelihoods or likelihood ratios)
are by construction robust to prior prob shift
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How about Frequentist LFI Approaches?

DES collaboration, Abbott+17

KiDS, Joudaki+17
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w5 shifting priors (for all 6, and for finite n)?
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@ Frequentist approaches (that estimate likelihoods or likelihood ratios)
are by construction robust to prior prob shift

® However, most such approaches
@ rely on asymptotic assumptions (e.g. Wilks 1938) and regularity conditions
® can't handle e.g. n=1 — single observation from 6*

@ lack practical tools for checking coverage across entire parameter space
18
s,



Can we have it all?

Robust coverage guarantees even for small sample sizes
and shifting priors (“systematics”) for all 0 € ®

Diagnostics across the entire parameter space.

AN

Pl (9 S R(D)) =1—a, V0e€O




Can we have it all?

Robust coverage guarantees even for small sample sizes
and shifting priors (“systematics”) for all 0 € ®

Diagnostics across the entire parameter space.

AN

Pl (9 S R(D)) =1—a, V0e€O

* All done by leveraging the arsenal of ML/Al tools “as is” (same
network architecture and same loss functions, etc)
** Modular procedures: you plug in your favorite SBI results for
estimating likelihoods, posteriors or density ratios (NLE,

NPE,NRE) = theoretical guarantees
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Confidence Sets by Inverting Tests

Theorem (Equivalence of tests and confidence sets (Neyman 1937))

Constructing a 1 — oo confidence set for 6 is equivalent to testing

H():tg:@() VS. HAZH#QO

for every 6q in the parameter space.

Key ingredients:
@ data D = {Xl, ,Xn}
@ a test statistic, such as the likelihood ratio statistic A\(D; 6y)

@ an a-level critical value Cy,

Reject the null hypothesis Hy if A\(D;60y) < Cy, o

Slide credit: Nic Dalmasso



1. For every 6 in your parameter space: find the rejection
region for test statistic A(D, 6)

LR(D; 6)




2. Observe data D = D: construct confidence set of 6 by
comparing A(D;0) and Cpy ,

0.0 ~

2.5

5.0 -

R(D) = {0 € © | A(D;0) = Cpa}




How Do we Turn the Neyman Construction and Validation
into Practical Procedures?

The Neyman construction requires one to test
H():H:@o VS. HAIH#H()

for every 6y € O.

Key insight:

© Test statistic A(D; 6)
@ Ciritical values Cy, ,, or p-values p(D;0g) of the test

© Coverage Ppg (9 S R(D)) of the constructed confidence set

are conditional distribution functions of the (unknown) parameters, and
often vary smoothly across the parameter space O.



Efficient Construction of Finite-Sample Confidence Sets

LF2I

LR(D; 6)

LR(D; 6)

Rather than running a batch of I\/Io‘, e simulations for every null
hypothesis 6 = 0y on, e.g., a fine enough grid in ©, we can interpolate
across the parameter space using training-based ML algorithms.




Our Inference Machinery

LF2I: Likelihood-Free Frequentist Inference

Tirain = {(01,D1) ... (0B,Dp)} ~ 7(0)L(D;0)

Simulator

/

v

v

Test Critical Coverage
Statistics Values Diagnostics

A

Hypothesis Confidence
[ Data D ]_' Testing }_’[ Set for 0 }




What Test Statistic?

@ Derive test statistics from likelihood or LR estimates:

@ — ACORE (approximate LRT) [Izbicki et al 2013; Cranmer et al
2015: Dalmasso et al 2020, arXiv:2002.10399]

@ — BFF (approximate Bayes Factor) [Dalmasso et al 2021,
arXiv:2107.03920; Heinrich 2022, arXiv: 2203.13079]

@ Derive test statistics from posteriors or predictions:

@ — "WALDO" (modified Wald test statistic) [Masserano et al
2022, arXiv:2205.15680]

@ — "Frequentist-Bayes sets” [Masserano, Carzon et al 2024-]

28


https://arxiv.org/abs/2002.10399
https://arxiv.org/abs/2107.03920
https://arxiv.org/pdf/2203.13079.pdf
https://arxiv.org/abs/2205.15680

What Test Statistic?

- . o SR :
@ Derive test statistics from likelihood or LR estimates:

@ — ACORE (approximate LRT) [Izbicki et al 2013; Cranmer et al
2015: Dalmasso et al 2020, arXiv:2002.10399]

@ — BFF (approximate Bayes Factor) [Dalmasso et al 2021,
arXiv:2107.03920; Heinrich 2022, arXiv: 2203.13079]

- >,

@ Derive test statistics from posteriors or predictions:

@ — "WALDO" (modified Wald test statistic) [Masserano et al
2022, arXiv:2205.15680]

@ — "“Bayes-Frequentist sets” [Masserano, Carzon et al 2024-]

25
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Likelihood-Based Test Statistics’

[ Probabilistic classifier  : (6,X) » P(Y=1|X,0)

[J Simulate two sets:

Prlor
: Simulator > {91-, Xi’ Yz = l}fzzl, where @ ~ Ty, X | 0 ~ Fg/ E.g., 9m|5>irica
marginal!
g > {9j,Xj,Yj=O}f=/2,where0~7r9,X|9~G
P(Y=1|X,60 X|0o
Tost [ Let odds O(X;0) := ( — | ) == pX10) x Z(0;X)
Statistics P(Y=0|X,6) 8(X)

arXiv:2002.10399




Likelihood-Based Test Statistics’

[ Probabilistic classifier  : (6,X) » P(Y=1|X,0)
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.| FOI‘@ — (Xl’ ...,Xn).TeSt HO . 9 == 90 VS. Hl . 0 # 00
H:; 1 O(X;; 6y)
supg [, O(X;; 6)

BFF. 7(2:0,) :=— H?=1@(Xi;9o)
T JTI_, O(X; 0)dn(0)

» ACORE. 7(9;0,) :=

arXiv:2002.10399




Center Branch: Estimate Critical Values

LF2I: Likelihood-Free Frequentist Inference

Simulator

v

Test Critical Coverage
Statistics Values Diagnostics

A

Hypothesis Confidence
[ Data D ]_' Testing }_’[ Set for 0 }




Estimating Critical Values Cy, ,

To control Type | error at level a: l00(AD)

a

Reject Hy : 0 = 0y when \(D;60y) < Cy, o, Where N\

Ceo, a

Coy,0 = arg sup {C Ppjg, (A(D;0p) < C) < Oz} :

CeR

Problem: Need to compute Ppg (A(D;0) < C) for every 0 € ©.

Solution: Fy4(C | 0) =\Ppg(A(D;0) < C | 8))is a conditional CDF, so
we can estimate its a-quantile via quantile regression )\‘9(049)




Construct Confidence Set via Neyman Inversion

LF2I: Likelihood-Free Frequentist Inference

Simulator

N
AN

ee@upe ) > Cha

Test Critical Coverage
Statistics Values DIaQHOStICS

Hypothesis Confidence
[ Data D ]_'[ Testing }_’[ Set for 0 }




Are the Constructed Confidence Sets Valid?

Theorem (Validity for any test statistic)

Let Cg be the critical value of a level-o test based on the statistic
A(D;60y). Then, if the quantile regression estimator is consistent,

P

B — 0

Cp

> C™,
where C* is such that

Ppjo(A(D;00)) < C7) =

NOTE: Regardless of the number of observations n, how well we
estimate the test statistic, and the choice of prior 7,
If B' is large enough, we can construct a confidence set with guaranteed
nominal coverage regardless of the observed sample size n.




Right Branch: Assessing Conditional Coverage of R(D)

How do we check coverage of constructed confidence sets across ©7
Note:

R(D)={0c O | \D;0) > Cpa}

Py (9 e R(D) | 9) — Epyg []1 (9 € fz(@)) | 0}

( Proposal )
"0

Smulater @ Sample 0; and data D; ~ Fy,
¢ )
g, @ Construct confidence set R(D;)
B
ﬁ ; / Q@ For {0;, R(D;)}2 ., regress
iagnostics R
[ Confidence ]_|
set for 6

How close is the actual coverage to the nominal confidence level 1 — a7
36



Right Branch: Assessing Conditional Coverage of R(D)

How do we check coverage of constructed confidence sets across ©7
Note:

R(D)={0c O | \D;0) > Cpa}

Py (9 e R(D) | 9) — Epyg []1 (9 € fz(@)) | 0}

( Proposal j
"0

Smulator @ Sample 0; and data D; ~ Fp,
( )
g, @ Construct confidence set R(D;)
B
ﬁ ; / Q@ For {0;, R(D;)}2 ., regress
iagnostics .
{Cor:f}degce]_| Independent check of coverage

across parameter space
How close is the actual coverage to the nominal confidence level 1 — a7

37



Ex: Construct Confidence Sets (MVG data)

Xi,..., X, ~N(0,1;), where n=10, 8 =0

LFI setting, 90% confidence sets

1.5
1.0
0.5 ]
< 0.0] &" * D"
—0.57 ACORE, B=B'=5000 1
BFF, B=B'=5000
-1.04{ 1 Exact LR
L — Exact BF
-15

215 -10 -05 00 05 10 15 -15 -10 -05 00 ©05 10 15 -15 -10 -05 00 05 1.0 15
91 61 61

For d<10, ACORE (estimate LRT) and BF (estimate BF) confidence

sets (for B=B'=5000) are similar in size to the confidence

38




Ex: 1D Gaussian mixture model with n=1000
(Diagnostics Across the Parameter Space)

X1,..., X, ~05N(0,1) +0.5N(—6,1)

LR with Monte Carlo samples ) Chi-square LRT ) LR with Cg via Quantile Regression

MC/bootstrap: SLOW

6

(Left) LR with1000 MC simulations at each 6 on a fine grid in 1D
(Center) Assume chi-squared distribution of LR statistic
(Right) LR with quantile regression with B’=1000 simulations total

2
GGEE————————]] SGSSSSSHHH



Back to the Problem of Calorimetric Muon
Energy Measurement... [Masserano et al, AISTATS 2023]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV. 1. Bias

Energy=655.69965 GeV

>
)
1)
E
8

E Pred

e
ETrue [GeV]

Figure 9: 2D histogram of uncorrected Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test kNN prediction versus true energy for test
data. data.

Figure 4: Muon entering the calorimeter in z direction.

[Kieseler et al., July 2021 arXiv:2107.02119] Source: Dorigo et al 2020.
Slide credit: Luca Masserano

{(917 X1>7 (927 X?)? cee (eBa XB)}? where ¢ ~ T(9)7 X‘H ~ F9




e | Back to muon energy calorimeter problem:
LF21/Waldo Confidence Sets
: Derived from CNN Predictions:
Robust Coverage Across the Parameter Space

Coverage Diagnostics Interval Length

- p’realctlon sets

O
o

>
v
,(2, 2500
L
<+

g
N
o
o
o

Coverage
o
S

—— Waldo Energy Sum
Waldo 28 Features Waldo Energy Sum
Waldo Full Calorimeter | Waldo 28 Features
Prediction Sets Full Calorimeter - Waldo Full Calorimeter
Nominal coverage = 68.3 % ’ Prediction Sets Full Calorimeter

Median Len
=
o
o

1000 2000 3000 4000 5000 6000 7000 8000 ¢ 1000 2000 3000 4000 5000 6000 7000 8000
True Muon Enerqgy 6 [GeV] True Muon Energy 6 [GeV]

Figure credit: Luca Masserano

arXiv:2205.15680 (AISTATS 2023)



https://arxiv.org/abs/2205.15680

But what if we have >1,000 nuisance parameters?

The parameters 0

One more issue: the “theory” space is not the only thing effecting the data

* every step of the forward process comes with its own parameters
(we understand the process generally but need additional knobs to model the data)

bt e
4iPPy whee
+Bytigs e
+ B~ vip)

palza)  pedea)  pCalm)  plzl6)

| | ~.
p(x|0) = /dzddzhdzp p(x|zd,( p(zd|zh,.) p(2n|2p, p(zp|'6th)

core “theory”
nuisance parameters parameters of inferest
(e.g. “Higgs Mass”

Slide credit: Lukas Heinrich
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Critical Value Estimation is Difficult with Many NPs

To guarantee frequentist coverage by Neyman's inversion
technique, we need to test null hypotheses

Hopo i pp=po versus Hy,o:p#po for ppeM

by comparing test statistics to the cutoffs 6“0 == inf e é(uo,u)-

That is, one needs to control the type | error at each pg for all possible
values of the nuisance parameters.

Can lead to numerically unwieldy and costly computations if the number
of nuisance parameters is large (>10 NPs).




Two Popular Approaches to Systematics

Hybrid Approaches to Critical Value Estimation

@ h-ACORE: Hybrid Resampling(or Profiling! of Nuisance Parameters
» Compare ACORE test statistic with the hybrid cut-off

~ . p—1 ~
Co = FA(D;uo)|(uo,;#o) (e |10, o)

where the quantile regression is based on a train sample T’ generated
at fixed V,,,,.

@ h-BFF: Integration of Nuisance Parameters
» Compare BFF test statistic with the approximate cut-off

. ﬁ—l
CNO T(D;uo)’lm (Ol ’ IUIO)

where we draw the train_sample 7’ from the entire parameter space
© = M x N, but apply quantile regression using . only

1\V/an der Vaart, 2000; Chuang & Lai, 2000; Feldman, 2000; Sen et-al. 2009



Assessing Confidence Sets

@ "For small sample sizes, there is no theorem as to whether
profiling or marginalization will give better frequentist
coverage for the parameter of interest” (Cousins 2018)
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Assessing Confidence Sets

@ "For small sample sizes, there is no theorem as to whether
profiling or marginalization will give better frequentist
coverage for the parameter of interest” (Cousins 2018)

@ In general settings, our LF2| diagnostic tool can

@ provide guidance as to which method to choose for the
problem at hand, and

@ pinpoint regions of parameter space where inference
may be unreliable, e.g., under/over-confident.

46



-~

Ex: Diagnostics for Classical “On-Oft” Problem
[Lyons 2008; Cowan et al 2011; Cowan 2012; L. Heinrich 2022]

@ Simultaneous measurements of two Poisson processes

Observed data X = (IV,, Ny),

where N, ~ Pois(v7bh), Ns; ~ Pois(vb + us)

@ Ngis the # of events in the background region (expected background
count b)

@ Ns is the # of events in the contaminated signal region (expected signal

count s)
@ Unknown parameters:

@ signal strength-POlI (u); scaling factor-NP ()

o [L. Heinrich 2022] Set hyper-parameters at s=15, b=70, 7=1 =

comfortably in asymptotic regime but with non-Gaussian likelihood


https://arxiv.org/pdf/2203.13079.pdf
https://arxiv.org/pdf/2203.13079.pdf

Our diagnostic tool can identify regions in parameter

space with under/over-coverage (95% nominal)
Left: LRT with profiling; Center: marginalization; Right: chi-square)

h-ACORE

0
—
()
>
(@)
&)
©
()
]
©
£
S
n
(WN]

el B h-ACORE
[ h-BFF, under-coverage
I h-BFF, correc t/over-covera ge

h-BFF (center top) has closest to
nominal coverage with the highest
constraining power (orange hist)

Proportion

0% 80% 100%
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Finally, there are also nuisance-aware alternatives with
coverage guarantees under shifting priors

Classmcatlon under Nwsance Parameters and Generallzed Label Shlft in Likelihood-Free Inference
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What? Valid prediction sets for parameters of interest while controlling for nuisance parameters.
Why? Inference based on classifier predictions or hybrid likelihood methods is not robust to Generalized Label Shift.

How? Recast classification as a hypothesis testing problem and estimate ROC as a surface of the nuisance parameter space.

Background

Our Approach: Nuisance-Aware Prediction Sets (NAPS)

— Complex Scientific Inference Relies on Trustworthy Parameter Constraints —

Much of scientific research aims to

constrain the parameters of theoretical 096
models through simulated, experimental,
or observational data. For example...

Kvaso
(original n(z), KV450 secup) W

LE

Identity of Cosmic Rays Cell Type via RNA-seq

“Theory.

i 0=(Y.0)—>

Likelihood-Free Inference

B
Y € {0,1} is the parameter of interest, v € .#" are nuisance parameters:

- Often not scientifically interesting, but affect the data generating process
- Represent "known unknowns", e.g. device calibration errors

- Not observable at inference time

— Hybrid Methods do not Guarantee Validity —

Finite-sample profiling, marginalization, and asympotitic profiling [1][2][3] either
fail to achieve nominal coverage or result in uninformative confidence sets.

acone nare scone

Figure: POl =

Desiderata

Endow pre-trained classifiers with domain adaptation capabilities:

1. Robust coverage guarantees under generalized label shift

2. Valid for all Y; v even with finite number of observations (e.g., n = 1 for Y*)
3. Tighter prediction sets if we can constrain nuisance parameters v given x°**
4. Scalable to high-dimensional data X

Key Assumptions
Data generating process: (6, X) ~ p(6)L(6; X) where 6=(Y,v)
Generalized Label Shift (GLS) condition:
- Fixed likelihood: £(6; X) = Piain(X | 6) = Prarger(X | 6)
- Parameter marginal distribution shift: py4n(6) # Prarge(6)

Binary classification as posi hesis testing:
-Hoy:6€ Op vs. Hy,y:60 € 01, where @o v} Xﬂ and O1={y)°x ¥
- Test statistic 1(X) = Ptrain(Y = y | X) e.g. any pre-trained probabilistic classifier

How to choose cutoff C*q,y? jection pr
-Let Wy (C; y, v) = PpageTy(X) < C | ¥, v) — this is invariant under GLS!

- Note that TPR(C; v) = Wi,(C; 1, v) and FPR(C; v) = W (C; 0, v)

- Estimate via probabilistic classification (monotonic in C) on augmented calibration set

1.0
0.8
o 06
&
Example: Dependence of the ROC on 04y [ ol
! o
the energy of cosmic-ray shower. Cutoff 02 — - 1000 Tev

2000 TV
00 —— Ignores nuisance

0.0 0.2 0.4 0.6 0.8 1.0
FPR

chosen by ignoring nuisances does
not guarantee FPR/TPR control!

Cutoff to control FPR or TPR (or function of them) when v is unknown:
- Uniform control: C*,, = infye 4 FPR_7(a; v) — can be conservative!

Can increase power via:

- Assume we get (7 - y) confidence set Sy{x‘”’s; y) for v, given y € {0,1}.
- Data-dependent cutoff: C*, ,(x**) = . Slyl{1{fm , FPR(a - vy;v)
, v

Neyman construction yields Nuisance Aware Prediction Sets (NAPS):
Hy(x°*) ={y € {0,1} : Ty(x‘“’s) >C%y}

H,(x°*) controls Type | error at level aforall y, v € Y x V'

across Y x V':

Protecting Against Batch Effects in Single-Cell RNA Sequencing: NAPS Ensures Valid

Cell-Type Classification under GLS

Background: RNA-seq experiments involve extracting RNA from target cells and
examining counts of specific genes. Observed gene counts depend on cell type as
well as experimental protocols and laboratory conditions.

Task: Infer cell type (CD4+ T-cells or Cytotoxic T-cells) from 100 gene counts simulated
via scDesign3 [4], accounting for 4 possible experimental protocols. Train data contains
a mix of all 4 protocols; target data is generated from a single (unknown) protocol.

Actual Coverage

Baselines: 02

- Standard Prediction Sets (constanl cut on Pyain(Y | X))
Conditional Prediction Sets [5]
- Conforma\ Adaptive Pred\ctlon Sets 6]

Key Observations:

- NAPS (with conservative cutoffs) are valid regardless of the protocol. All other baselines
undercover for at least two protocols.

- NAPS pays a price by being more conservative under “easier” protocols.

Actual Coverage

Protocol 1 Protocol 2

G5 o5 67 08 o 1005 o6 07 08 05 10

Protocol 3 Protocol 4

*Norminal Coverage (1—a) - Nominal Coverage (1 —a)

Powerful Identification of Atmospheric Cosmic Ray Showers: NAPS Achieves Higher

Precision than the Bayes Classifier

Energy: (100, 300) Tev. Energy: [300, 10000] TeV

Background: High-energy cosmic rays are
extremely informative probes of astrophysical
sources in our galaxy and beyond. Cosmic rays
produce observable secondary showers on earth
when they interact with our atmosphere.

PESE————= S

Task: Classify cosmic rays as hadrons or gamma
rays from secondary showers simulated by
CORSIKA [7], accounting for energy, zenith angle,
and azimuth angle. No GLS is induced.

Within Predicted Gamma
R

Baselines:
- Bayes Optimal Classifier

1

E

E
Key Observations: ‘3
- In the absence of GLS, NAPS (with and without »E
constraining nuisance parameters) achieves higher =% s o
precision and lower FDR than the Bayes Optimal = B e s et
Classifier at confidence levels above ~70% B - LI A
- Constraining nuisance parameters leads to Zoaf *

performance gains in this setting.

Energy [TeV]

o
-0 -5 0 5 10
l0g 7y, =0
The difficulty of the classification problem is
dependent on the energy of the cosmic ray.

Energy [TeV]

“Zenith [rad]
=3 y=0001
=3 y=0010

y=0020

y=0030
y=0040
=3 y=0050

Zenith [rad) =

" paimutn rad)

Using Waldo [8] + LF2I [9] to construct

Confidence Level (1-a)

sets on 3 nuisance parameters

References: [1] Chuang et al., 2000 [2] Feldman, 2000 [3] Sen et al., 2009 [4] Song et al., 2024 [5] Sadinle
[6] Romano et al., 2020 (7] Heck et al. 1998 [8] Masserano et al., 2022 [9] Dalmasso et al., 2021

etal., 2019
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Finally, there are also nuisance-aware alternatives with
coverage guarantees under shifting priors

Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference

Luca Masserano * ' 2, Alexander Shen * 7, Michele D

1 Department of Statistics and Data Science, Carnegie Mellon University
2 Machine Learning Department, Carnegie Mellon University
Denartmant of Phusics and Astronomy Liniversita di Padova

3, Tommaso Dorigo #°¢, Rafael Izbicki 7, Ann B. Lee "2

[J Task 2: Separate gamma-induced and hadron-induced particle
showers using measurements from ground-based detector-arrays

J Problem: Secondary particle showers on the ground depend on
1. Identity of the astrophysical source
2. Additional shower parameters v

For example v = (E, A, Z): energy E of the primary particle,
azimuth and zenith angles of the particle shower

E o E arxiv paper
2 05330

E lﬁm If2i package

j_ﬂm

— A Richer Mechanistic Model with Nuisance Parameters
Theory

i 6=(Y.0) —>

Likelihood-Free Inference

B
Y € {0,1} is the parameter of interest, v € .#" are nuisance parameters:

- Often not scientifically interesting, but affect the data generating process
- Represent "known unknowns", e.g. device calibration errors

- Not observable at inference time

— Hybrid Methods do not Guarantee Validity

Finite-sample profiling, marginalization, and asympotitic profiling [1][2][3] either
fail to achieve nominal coverage or result in uninformative confidence sets.

AGORE nBFE AcoREz
. i |
u u u
Figure: POl =
Desiderata

Endow pre-trained classifiers with domain adaptation capabilities:

1. Robust coverage guarantees under generalized label shift

2. Valid for all Y; v even with finite number of observations (e.g., n = 1 for Y*)
3. Tighter prediction sets if we can constrain nuisance parameters v given x°**
4. Scalable to high-dimensional data X

How to choose cutoff C*q,y? jection pr
-Let Wy (C; y, v) = PpageTy(X) < C | ¥, v) — this is invariant under GLS!

- Note that TPR(C; v) = Wi,(C; 1, v) and FPR(C; v) = W, (C; 0, v)

- Estimate via probabilistic classification (monotonic in C) on augmented calibration set

e

0.8

o 06

&
Example: Dependence of the ROC on 0.4 ol

. o

the energy of cosmic-ray shower. Cutoff 02 — - 10007V
chosen by ignoring nuisances does 2000 TV
not guarantee FPR/TPR control! 0.0 — lgnores nuisance

00 02 04 06 08 10
FPR

Cutoff to control FPR or TPR (or function of them) when v is unknown:

- Uniform control: C*,, = infye 4 FPR_7(a; v) — can be conservative!

Can increase power via:

- Assume we get (7 - y) confidence set Sy{x‘”’s; y) for v, given y € {0,1}.
- Data-dependent cutoff: C*, ,(x**) = . , FPR(a - vy;v)
, v

inf,

Sy

Neyman construction yields Nuisance Aware Prediction Sets (NAPS):
Ho(x) = {y € {0,1} : 1,(x") > C*,, }

H,(x°**) controls Type | error at level aforally, v € Y x N

across Y x V':

- NAPE pays a price by being more conservative ui

nder “easier” protocols.

ol

Nominal Coverage (1-a)

Nominal Coverage (1 - a)

Powerful Identification of Atmospheric Cosmic Ray Showers: NAPS Achieves Higher
Precision than the Bayes Classifier

Background: High-energy cosmic rays are
extremely informative probes of astrophysical
sources in our galaxy and beyond. Cosmic rays
produce observable secondary showers on earth
when they interact with our atmosphere.

Task: Classify cosmic rays as hadrons or gamma
rays from secondary showers simulated by
CORSIKA [7], accounting for energy, zenith angle,
and azimuth angle. No GLS is induced.

Baselines:
- Bayes Optimal Classifier

Key Observations:
- In the absence of GLS, NAPS (with and without

constraining nuisance parameters) achieves higher

precision and lower FDR than the Bayes Optimal
Classifier at confidence levels above ~70%

- Constraining nuisance parameters leads to
performance gains in this setting.

Energy: (100, 300) Tev

Energy: [300, 10000] TeV.

Within Predicted Gamma

L S,

1

o

Within True Gamma (y:.

o 0.1, NP y=0
.15 y>0 5

Energy [TeV]

02
-10

50 5
log 7y, =0

10

The difficulty of the classification problem is
dependent on the energy of the cosmic ray.

Energy [TeV]

“Zenith [raq

EJF/ E

] s
=y-00m 3
=y=o00 Eu
y=000 5 |
y=000 & \
y=00i0 N,
. =020 Azimuth [rad]

Using Waldo [8] + LF2I [9] to construct

Confidence Level (1-a)

sets on 3 nuisance parameters

References: [1] Chuang et al., 2000 [2] Feldman, 2000
[6] Romano et al., 2020 (7] Heck et al. 1998

[3] Senetal., 2009 [4] Song et al., 2024 [5] Sadinle

[8] Masserano et al., 2022

[9] Dalmasso et al., 2021

etal., 2019
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Finally, there are also nuisance-aware alternatives with
coverage guarantees under shifting priors

Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference
Luca Masserano * 2, Alexander Shen * 7, Michele Doro *, Tommaso Dorigo #°¢, Rafael Izbicki /, Ann B. Lee "2
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2 Machine L gDpn

] Task 2: Separate gamma- mduced and hadron-induced particle
showers using measurements from ground-based detector-arrays

0 Problem: Secondary particle showers on the ground depend on
1. Identity of the astrophysical source

E o E arxiv paper
2 05330

E lﬁm If2i package

________

»

2. Additional shower parameters v ¥
For example v = (E, A, Z): energy E of the primary particle, 1
azimuth and zenith angles of the particle shower P ITI TS
-NAngaysapricebybeing more conservative under “easier” protocols. sl '“":7”“’;‘\\ e
igher
Z(0; X)
YE {0,1}is thg p:
Eg;gﬁ%j:&g Physical Model Observatlon Model ‘
_Finite-sampleprof 9 = (Y’ V) B :H:} X rj'v"“”':o ’

u

Endow pre-trainec
1. Robust covera
2. Valid for all Y, v
3. Tighter predictil
4. Scalable to hig

O Y € {0,1} is the parameter of interest, v € 4 are nuisance parameters not of direct interest

J Nuisances are not observed at the inference stage, but we can model their effect via simulations

0 We assume Z(0; X) = p(X | y,v) does not change but possibly 7,,,,,(Y, V) # 7,,,,.(Y,v) = GLS

AAAAAAAAAAAA

21 [9] to construct
nuisance parameters
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Finally, there are also nuisance-aware alternatives with

coverage guarantees under shifting priors
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Protecting Against Batch Effects in Single-Cell RNA Sequencing: NAPS Ensures Valid

What? Valid prediction sets for parameters of interest while controlling for nuisance parameters.
Cell-Type Classification under GLS

Why? Inference based on classifier predictions or hybrid likelihood methods is not robust to Generalized Label Shift.

How? Recast classification as a hypothesis testing problem and estimate ROC as a surface of the nuisance parameter space. Background: RNA-seq experiments involve extracting RNA from target cells and
examining counts of specific genes. Observed gene counts depend on cell type as
well as experimental protocols and laboratory conditions.

Protocol 1 Protocol 2

overage

Background Our Approach: Nuisance-Aware Prediction Sets (NAPS)

Task: Infer cell type (CD4+ T-cells or Cytotoxic T-cells) from 100 gene counts simulated

7
/ /ﬂ/
7

0.81

8

Complex Scientific Inference Relies on Trustworthy Parameter Constraints —| Key Assumptions via scDesign3 [4], accounting for 4 possible experimental protocols. Train data contains g :,

Much of scientific research aims to Datamananatinamrocess: (6, X) ~ p(6)L(6; X) where 6= (Y, v) a mix of all 4 protocols; target data is generated from a single (unknown) protocol. .
rnglf)t((thS) c;ntéltl:)n: 1o Baselines: . i
] ~(6; ! ) __p’fﬂ’"( ‘, ) = Parge(X | 6) - Standard Prediction Sets (constant cut on Py,(Y | X)) Protocold
1 . nal distribution shift: p4in(6) # Prarge(6) - Class-Conditional Prediction Sets [5]  a

- Conformal Adaptive Prediction Sets [6] % on

mposite vs. composite hypothesis testing: g .

€ 01, where O = {y} x.# and O = {y}¢ x ¥ Key Observations: =

Y =y | X) e.g. any pre-trained probabilistic classifier - NAPS (with conservative cutoffs) are valid regardless of the protocol. All other baselines § .

o

undercover for at least two protocols.
- NAPS pays a price by being more conservative under “easier” protocols.

PR S—

2
o 007 "{How do we increase power? Restrict search to subset of /"
o oal b 195 Tov » Assume we get (1 — y) confidence set Sy(x"bs; y) forv, giveny € {0,1}.
P —— 600 TeV .» Data-dependent cutoff: C;y(x"bs) = inf FPR Y a-7;v)
0.2 — = 1000 TeV vES (x°*37)
=+= 2000 TeV i B0 02 04 s 0B 10 GORSIKA T, sccourtingfor oneray. sonin angls, * L5 o S5 5 e SRR e o
0.0 % gnores nuisance ' | Theorem 1 (Nuisance-aware cutoffs for FPR control). Let o € (0,1) and y € [0,a), and let S),(X; )
0.0 0.2 0.4 0.6 0.8 1.0 be a valid confidence set for v as in Definition 1. Define the nuisance-aware cutoff to be
FPR | C(X)= inf FPR™'(a—r7;y,0).

veS(X3y)

| Estimate the ROC as a function e [ Then, for all v € A, we have FPR control at the desired level:
: =y
‘ of both the POl and NPs ™ Purger (5,0 < C1X) 1 y0) <@
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Atmospheric Cosmic Ray Showers

(] Task: Separate gamma-induced particle showers
from hadron-induced showers using measurements
from ground-based detector arrays

J Need to account for additional shower nuisance
parameters: energy, azimuth angle, zenith angle

[J Get confidence sets for v using LF2l + Waldo
(Masserano et al. 2022), then NAPS

[0 Results:

» NAPS (with conservative cutoffs; blue) achieves
good precision and low FDR at high confidence
levels, but tends to be conservative at lower ones

» NAPS (with data-dependent cutoffs; )
increases performance with uniformly better results

» The set-valued classifier returns ambiguous
prediction sets when it is uncertain on the output

Within Predicted Gamma (ypeq = 1)

Within True Gamma (yi0 = 1)

Energy: (100, 300) TeV

Energy: [300, 10000] TeVv
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Take-Away: LF2I (inverse problem)

@ Credible regions and prediction sets do not necessarily reflect
where the true parameter is for inverse problems, esp for
incompatible or shifting priors (“systematics”)

@ With LF2] we can construct confidence sets with robust
coverage guarantees even for finite samples and shifting priors

@ LF2lis fully modular: Plug in your favorite SBI results (for
estimating likelihoods, LRs, posteriors, predictions, etc),
calibrate and run diagnostics across the entire parameter space.
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@ LF2lis a fully modular and amortized framework

https://github.com/lee-group-cmu/I{2;i

LF2l: Likelihood-Free Frequentist Inference

Simulator

v

Test Critical Coverage
Statistics Values Diagnostics

A

B\ B
Hypothesis Confidence
C DataD |- Testing ’[ Setforo



https://github.com/lee-group-cmu/lf2i

Take-Away: LF2I (inverse problem)

@ Validity and Diagnostics: Any existing or new test statistic
can be used to create valid confidence sets and run
diagnostics.

@ Prior Independence: LF2| guarantees (approximate)
conditional coverage regardless of prior

@ Power: Hardest to achieve in practice. Area where most
statistical and computational advances will take place.

@ ACORE (Approximate Computation via Odds Ratio Estimation):

~ [17, O(X¢bs; 6)
supgee 1721 O(X9bs; 0)

A(D;0) = log

@ BFF (Bayesian Frequentist Factor):

[T O(X5"; 60)

0) = ———F5——F———.
g Jo =y O(X§™; 0) drr (6)
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