
TDA methods aim to relate a modelʼs decision on a specific sample to its 
training data. Given a dataset                                    ,
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Training Data Attribution (TDA)

a TDA method is a function                              which assigns a real valued 
attribution score to each training sample.

Several approaches to TDA exist. Major approaches include approximating 
the effect of Leave-one-out LOO) training 1, and using interpretable 
kernel surrogates 2.

and a test sample           ,

Evaluation of attributions is a challenging task, due to the absence of a 
reliable ground truth. Existing approaches can be summarized by the 
following groups:

● Ground Truths: Directly comparing attributions with a ground truth, (e.g. 
LOO retraining 1 ). This ground truth is expensive to compute, and 
dominated by noise due to the stochastic nature of the standard training 
procedures 3 . Therefore, alternative approaches were proposed.

● Heuristics: Measuring for desirable properties and applying sanity 
checks. One example metric measures the dependence of the 
attributions on the model parameters, by measuring the correlation 
between the attributions of the original model and a randomly initialized 
model 4 .

● Downstream Tasks: Evaluate the effectiveness of attributions in 
achieving a task in a controlled setup. The most prominent example of 
this kind of evaluation is mislabeling detection. This is done by changing 
some of the training labels randomly, training a model on this modified 
dataset, and finally using attributions to detect the mislabeled samples in 
the training dataset 1,2 .

Evaluation of TDA Methods

The community lacks a comprehensive and standardized evaluation   
framework, despite TDAʼs potential for interpretability and applications.

quanda strives to fill this research gap and provides an easily extendable, 
unified and user-friendly interface to practitioners on Python using 
PyTorch. This allows users to easily obtain a birdʼs eye view on the 
performance of attributors in different setups. 

quanda presents the following components to its users:
 

● Explainers: Unified interface to easily wrap a separate TDA 
implementation. Ready to use wrappers for existing implementations of 
major methods.

● Metrics: Implementations of several evaluation metrics from the 
literature, which directly evaluate generated attributions.

● Benchmarks: Implementations of benchmarking tools, providing a 
seamless evaluation process. They encapsulate creation of controlled 
setups, model training, attribution and evaluation. Furthermore, quanda 
provides precomputed benchmarks for easy and standardized 
evaluation of different TDA methods. These benchmarks include 
pretrained models as required by the evaluation criteria and are 
currently being worked on to include new datasets.

Library Features

quanda is completely open-sourced, thoroughly tested. We apply linting 
and type checking to ensure code quality and functionality. Detailed 
documentation is available in quanda.readthedocs.io along with guides 
and tutorials on quanda‘s different use cases.

Below is an example usage of quanda that generates attributions and 
evaluates them using a Metric:

● Correspondence:

import quanda

trak_explainer = quanda.explainers.wrappers.TRAK(

model=model, train_dataset=train_dataset, model_id=model_id,

cache_dir=cache_dir, proj_dim=2048 

 )

class_detection = quanda.metrics.downstream_eval.ClassDetectionMetric(

model=model, train_dataset=train_dataset

  )

for (samples, labels) in test_dataloader:

pred_labels = model(samples).argmax(dim=1)

tda = trak_explainer.explain(test_tensor=data, targets=pred_labels)

class_detection.update(explanations=tda, test_labels=pred_labels)

print("Class Detection metric output: ", class_detection.compute())

Library Maintenance and Code QualityBasic Usage

Learn More

We can also use Benchmarks to use precomputed assets for evaluation:
import quanda

benchmark = quanda.benchmarks.downstream_eval.ClassDetection.download(

     name="mnist_class_detection", cache_dir=cache_dir, device=device

  )

trak_args = {

"model_id": "mnist_class_detection",

"cache_dir": cache_dir,

"proj_dim": 2048,

}

score = benchmark.evaluate(

          explainer_cls=quanda.explainers.wrappers.TRAK,

expl_kwargs=trak_args

   )["score"]
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