
TDA methods aim to relate a modelʼs decision on a specific sample to its
training data. Given a dataset ,

quanda: An Interpretability Toolkit for
Training Data Attribution Evaluation and Beyond

Dilyara Bareeva, Galip Ümit Yolcu, Anna Hedström, Niklas Schmolenski,
Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin

Training Data Attribution (TDA)

a TDA method is a function which assigns a real valued
attribution score to each training sample.

Several approaches to TDA exist. Major approaches include approximating
the effect of Leave-one-out LOO) training 1, and using interpretable
kernel surrogates 2.

and a test sample ,

Evaluation of attributions is a challenging task, due to the absence of a
reliable ground truth. Existing approaches can be summarized by the
following groups:

● Ground Truths: Directly comparing attributions with a ground truth, (e.g.
LOO retraining 1). This ground truth is expensive to compute, and
dominated by noise due to the stochastic nature of the standard training
procedures 3 . Therefore, alternative approaches were proposed.

● Heuristics: Measuring for desirable properties and applying sanity
checks. One example metric measures the dependence of the
attributions on the model parameters, by measuring the correlation
between the attributions of the original model and a randomly initialized
model 4 .

● Downstream Tasks: Evaluate the effectiveness of attributions in
achieving a task in a controlled setup. The most prominent example of
this kind of evaluation is mislabeling detection. This is done by changing
some of the training labels randomly, training a model on this modified
dataset, and finally using attributions to detect the mislabeled samples in
the training dataset 1,2 .

Evaluation of TDA Methods

The community lacks a comprehensive and standardized evaluation
framework, despite TDAʼs potential for interpretability and applications.

quanda strives to fill this research gap and provides an easily extendable,
unified and user-friendly interface to practitioners on Python using
PyTorch. This allows users to easily obtain a birdʼs eye view on the
performance of attributors in different setups.

quanda presents the following components to its users:

● Explainers: Unified interface to easily wrap a separate TDA
implementation. Ready to use wrappers for existing implementations of
major methods.

● Metrics: Implementations of several evaluation metrics from the
literature, which directly evaluate generated attributions.

● Benchmarks: Implementations of benchmarking tools, providing a
seamless evaluation process. They encapsulate creation of controlled
setups, model training, attribution and evaluation. Furthermore, quanda
provides precomputed benchmarks for easy and standardized
evaluation of different TDA methods. These benchmarks include
pretrained models as required by the evaluation criteria and are
currently being worked on to include new datasets.

Library Features

quanda is completely open-sourced, thoroughly tested. We apply linting
and type checking to ensure code quality and functionality. Detailed
documentation is available in quanda.readthedocs.io along with guides
and tutorials on quanda‘s different use cases.

Below is an example usage of quanda that generates attributions and
evaluates them using a Metric:

● Correspondence:

import quanda

trak_explainer = quanda.explainers.wrappers.TRAK(

model=model, train_dataset=train_dataset, model_id=model_id,

cache_dir=cache_dir, proj_dim=2048

)

class_detection = quanda.metrics.downstream_eval.ClassDetectionMetric(

model=model, train_dataset=train_dataset

)

for (samples, labels) in test_dataloader:

pred_labels = model(samples).argmax(dim=1)

tda = trak_explainer.explain(test_tensor=data, targets=pred_labels)

class_detection.update(explanations=tda, test_labels=pred_labels)

print("Class Detection metric output: ", class_detection.compute())

Library Maintenance and Code QualityBasic Usage

Learn More

We can also use Benchmarks to use precomputed assets for evaluation:
import quanda

benchmark = quanda.benchmarks.downstream_eval.ClassDetection.download(

 name="mnist_class_detection", cache_dir=cache_dir, device=device

)

trak_args = {

"model_id": "mnist_class_detection",

"cache_dir": cache_dir,

"proj_dim": 2048,

}

score = benchmark.evaluate(

 explainer_cls=quanda.explainers.wrappers.TRAK,

expl_kwargs=trak_args

)["score"]

● Documentation ● Repository ● Paper

wojciech.samek@hhi.fraunhofer.desebastian.lapuschkin@hhi.fraunhofer.de
dilyara.bareeva@hhi.fraunhofer.de galip.uemit.yolcu@hhi.fraunhofer.de

References

[1] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In Proceedings of the 34th ICML,
vol. 70 of Proceedings of Machine Learning Research, p. 1885–1894. PMLR, 06–11 Aug 2017.

[2] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection for explaining deep neural
networks. In Advances in NeurIPS, vol. 31. 2018.

[3] Elisa Nguyen, Seo Minjoon and Seong Joon Oh. A Bayesian approach to analysing training data attribution in deep learning. In
Advances in NeurIPS, vol 36., 2024

[4] Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro Inui. Evaluation of similarity-based explanations. In International
Conference on Learning Representations, 2021.

