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Background
Central Task: Estimate Long-term Statistics of Chaotic
Systems with Coarse-grid Simulations

{3tu(:c, t) = Au(z,t)
u(z,0) = ug(x), ug € H

A: (Nonlinear) Operator; H': function space of interest.
Attractor Q: All trajectories {u(:, t)} will convergeto itas t — oo.

/ Sstrudt, u€ H, a.e. (average along traj).

Invariant Measure:  «

p* = lim —

T—)oo

Long-term Statistics: E, . ,-O(u) for measurement functionals 0.

u~u

« Key information of the physical system at dynamical equilibrium.

« Important in application: airfoil design, climate modeling, etc.

 [REMARK] Impossible to track trajectories for very-long time in chaotic
system, but possible to estimate statistics (shadowing lemma).

General Methods:
« Straightforward: Fully-Resolved Simulations (FRS)
Numerically simulate with very fine spatio-temporal grids/meshes.
TOO EXPENSIVE! Intractable for most practical problems.
« Estimations statistics with coarse-grid simulation:
Need to account for the large discretization error (i.e. missing information
from the fine scale).
 Known as Closure Modeling or Coarse-graining.

Scheme of Closure Modeling:

« F: filter from fine grid to coarse grid, e.g. spatial downsampling, Fourier mode
truncation etc.), viewed as a mapping in function space H.

* Filtered Dynamic d,u = FAu = Au + (FA — AF)u, (u:= Fu).

Unresolved
{8,51;(:13, t)

= Av(z,t) + clos(v;0), x € D’
v(z,0) = ug(x), up € F(H),
* Interpretation:
« Assign a vector field (A + clos) in the reduced space to drive the dynamics.
How to design closure models?
« Classical Models: hand-designed. Strong physical intuition and assumptions.
Machine Learning for Closure Models (Hopes: better expressiveness)
[Learning Framework] Supervised Learning (Single-State Model)

D Z |clos(T;; 0) — (FA — AF)u;||?
I I 1€ED
u;. data from fully-resolved (fine-grid) simulations

[Advanced Variants]
[Posterior Training] Tost (0: ) =

Jop(0;D) =

F(S(At)us)|?
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[History-aware Models] Model’s input: {@(z;,t — S)}z,eD’, 0<s<to

[Stochastic Closure Models]

Theoretical Results
Learning-based methods should not follow previous
closure modeling ansatz Au + clos(u; 0).
(A) Vg7 —
Full Space (FRS)/ =N

7/, Attractor

Filter: F
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Reduced Space

(Coarse-grid System) Filtered Attractor

»Learning-based closure models suffers from a large approximation error
Independent of model complexity, stemming from the non-uniqueness of
the target mapping.

»Leveraging history information and randomness can neither help.
» A fundamental limitation for any method following the ansatz A + closg.

»To mitigate the nonunique issue, model has to use a large number of
FRS data. The amount of training data is of the same order to estimate
long-term statistics! — eliminating the need for a closure model!

»0One could not expect the model to generalize among different
dynamics (e.g. different domain shape, different coefficient in the PDE).

Proof Idea: Functional Liouville Flow
* View functions u as particles.
* (Infinite-dimensional) Liouville egn. for analyzing the limit distribution.

Coarse-grid Dynamics that can achieve optimal approx. of u*:
Ov = 12 N— [ FAu|Fu = v] , u,: distribution of u € H at time t.

For CGS and learning closure model, one can only fixa i € P(H),
and evolve O = E,p|FAu|Fu = v]
> [ = u*:optimal approximation of u* in reduced system (Fuu®).

»In practice, the best model one can yield (assuming sufficient
expressive power of NN function class) corresponds to i = pg4¢4-

»Large gap between pu,,:, and u* for infinite-dim distributions!

Key Takeaway

>We need nonlinear interaction between information from different

scales (i.e. resolved part in coarse-grid system and unresolved parts)!

> Previous ansatz: A + clos(-,0)
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>»New Ansatz:
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(I) Previous closure modeling framework:
AU + closg (1)

(a) Training
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(c) Inference during coarse-grid simulation
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(b) After training

unresolved small-
scale information

Artifact

Neural Operators
» Resolution-invariant. (Support input from both coarse-grid and fine-grid).
» 0(1) jump along time instead of moving with tiny time grids.
» The infinitesimal generator of learned operator Gy plays the role of }L;
» Physics-informed learning + multi-resolution pre-training to reduce reliance on FRS data
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“" (1) New framework with nonlinear interaction ™
between different scales: Agl

(a) Training
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(b) After training |

Weights storing

%@

u(to)

information from
all scales

(c) Inference during coarse—grld simulation

AglU

(only ~10% snapshots from single FRS trajectory vs ~10° in previous works).

» Theoretical guarantee on optimal estimation of u* with coarse-grid simulations.

Theorem 3.1. For any h > 0, denote [i}, o :=

any € > 0, there exists § > 0 s.t. as long as ||(Gou)(-, h) —

N—o0
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large-scale info

High- frequency/
small-scale info

Low-frequency/ |

] No information

Information
mismatch

u, u' : Full-scale
functions

u : Filtered function

(+): Filter operator
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lim ~ Z_:l G vy (z)s any vo(z) with x € D'. For

S(h)ul|lx < 6,Yu € H, we have

Wa(fin.o, F41t™) < €, where Wy, is a generalization of Wasserstein distance in function space.

(Part of) Experiment Results

Kolmogorov Flow (2D forced Navier-Stokes eqn).

du=—(u-V)u—-Vp+ rAu+ (sin(4y),O)T, V-u=0, (z,y,t)€ [O,L]2 X R
Method Avg. TV~ Energy Vorticity Variance FRS 3970
CGS (No closure) 0.4914 178.4651% 0.1512 253.4234% CGS (No closure) 4.50
Smagorinsky 0.2423 52.9511% 0.0483 20.1740% Smagorinsky 4.81
Single-state 0.5137 205.3709% 0.1648 298.2027% Single-state 18.57
DSM 0.2803 74.2150% 0.0821 73.6158% DSM 13.67
MFF 02123 20.7055% 0.0115 20.4410% MFF 0.32
Our Method 0.0726 5.3276% 0.0091 2.8666% Ours 0.32
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