Generative Modeling and Data Augmentation for
Power System Production Simulation

Linna Xu, Yongli Zhu

Sun Yat-sen University

Gunagzhou, China

NeurlPS 2024 Workshop
Data-driven and Differentiable Simulations, Surrogates, and Solvers



Training data issues of load forecasting

10
- prediction

09 s FRE

Load forecasting is critical for the stable
operation of power systems and machine
learning methods prevail in this field.
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Communication failures, device malfunctions,
and newly built communities with limited
data can impede accurate load forecasting.
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Machine learning models usually assume
abundant, high-quality load demand data,
which is often unavailable in the power

industry. Load forecasting
model
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Dataset Augmentation for Load Forecasting

We explore the effectiveness of load data augmentation for power system
production simulation using TimeGAN and TS-Diffusion, respectively.
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Dataset Augmentation for Load Forecasting

» TimeGAN
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* Self-supervised learning: 1t integrates GAN with self-supervised learning to capture complex temporal patterns.

e Auto-encoder: It maps time series data to latent representations and a decoder that reconstructs the original data.
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Dataset Augmentation for Load Forecasting

» TS-Diffusion

» A diffusion model for time series data generation

» Encoder: processes the input time series using a
multi-head attention mechanism and a feed-
forward neural network

» Decoder: uses multi-head attention and feed-
forward layers, plus a deep decomposition design to
capture the trend and seasonality components of

the time series
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Experiment Results

» Comparison of indicators on different models

Original vs. TimeGAN augmented vs. TS-Diffusion augmented vs. replicated

Model dataset RMSE  MAE
XGBoost original 0.05774 0.04276
replicated  0.06485 0.04427
augmented 0.01526 0.00249
CatBoost original 0.04389 0.03323
replicated  0.04536 0.03243
augmented 0.00236 0.00098
RandomForest original 0.04183 0.02952
replicated  0.05846 0.03968
augmented 0.00153 0.00013
ExtraTree original 0.04467 0.03209
replicated  0.04495 0.03229
augmented 0.00023  0.00004

Model dataset RMSE  MAE

XGBoost augmented 0.06398 0.03445
CatBoost augmented 0.05637 0.02761
RandomForest augmented 0.06130 0.02949
ExtraTree augmented 0.05356 0.02395

(TS-Diffusion results)

(TimeGAN results)
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Experiment Results

» Statistic characteristics of generated data and raw data

Distribution of Load
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t-SNE Component 2

Experiment Results

» Statistic characteristics of generated data and raw data
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A Simple Showcase for Power System Production Simulation

The previously predicted load data can be utilized in a standard power-system-production-simulation procedure

External power grid

Regional load and power purchase timing diagram
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Conclusion & Future Work

* Propose a framework to improve the accuracy of load forecasting models using
generative machine learning under small samples

* The quality of the generated load data ( especially by the diffusion model) significantly
improves the load-forecasting accuracy

e Future work includes fine-tuning the generative models for better data quality and
conducting additional comparisons

* Applying transfer learning to enhance the model's generalizability will be the next step
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Thanks!

xuln6@sysu.edu.cn,
yzhul6@vols.utk.edu
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