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Introduction and motivation

We want to integrate Generative AI tools in all stages of design.

Experiments and results
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Methodology

Auto-decoder model[1] was trained to estimate signed distance function  

using ShapeNet dataset.

Vehicle geometric parameters were extracted automatically from mesh.

Drag estimator results:

To get an ideal latent z corresponding to target parameters, a MLP was 

trained to estimate parameters from optimized latent z. 

Use case 1: Estimating drag coefficient from 3D model[2]

Use case 2: Stylizing realistic images using ControlNet[3]

Generating 3D shapes satisfying target parameters

Comparison of target parameters during optimization

Estimating drag and stylizing realistic car-design image

Cd: 0.29 Cd: 0.31 Cd: 0.32 Cd: 0.31

https://arxiv.org/pdf/2410.18986

We aim to integrate engineering constraints into a 3D generative model for

vehicle design, considering design parameters, engineering performance,

and styling simultaneously.
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(a) Automatic parameter extractor (b) Examples of extracted parameters
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