Squeezing Water from a Stone:
Improving Pre-Trained SSL Embeddings Through
Effective Entropy Maximization Criterion (E2MC)
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But What About That Other Method?

Table 2: Top-1-Accuracy of linear classifier trained on ImageNet
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Low-Dimensional Statistics:
The Hero That SSL Needs, but Not the One It Deserves

What Constitutes Good Embeddings?

 Embeddings with maximum entropy preserve the most amount of
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What Have Others Tried?

« Alignment and Uniformity on the Hypersphere (AUH) [1]
« Distribute points uniformly on the hypersphere by minimizing the

Does It Really Help?

Short answer: Yes. Long Answer: It really does. .

Table 1: Evaluation of self-supervised embeddings. Top-1-Accuracy / mAP under different paradigms on the base (ImageNet) and other datasets.

Fundamental research into properties of large-scale SSL models.
* Do these methods work for LLMs? You can find out!

Linear Evaluation Semi-supervised Learning Transfer Learning

energy configuration of points using pairwise potentials.
« Limitation: Operates on samples of the high dimensional joint
distribution!

« Approximate Log-Determinant Maximization (CorinfoMax [2],

VICReg [3])

« Maximize the spread of the latent vectors in embedding space
by using the log determinant of the covariance matrix as an
approximation of the mutual information between input views.

» Limitation: Gaussian distribution assumption!

Method (checkpoint) 1% labels 10% labels  100% labels 1% labels 10% labels iNat18 VOCoT7
VICReg base [3] (1000 ep) 53.50 |x0.11  66.57 +0.02 | 73.20" 54.53*+0.12  67.97+0.03 47.007 86.607
VICReg continued (1010 ep) 53.51 |+0.07  66.57 +0.06 | 73.16 +0.02 — - - —
VICReg+ E2MC [ours| (1010 ep) |54.54|+0.05 66.82 +0.05 |73.45 |+0.07 55.05 +o0.08 68.12 +0.04 47.18 +0.11  86.80
SwAV base [4] (400 ep) 52.34 |+0.07  67.61 +0.02 74.307 52.57 +0.15  69.25 +0.05 46.00 88.38
SwAV continued (410 ep) 52.31|+0.07  67.56 +0.05  74.31 +0.02 — - — —
SwAV+ E2MC [ours] (410 ep) 53.40 +o0.01 67.73 +0.03 74.44 +o0.03 52.70 +0.54  69.24 +0.02 46.71 +o0.17  88.24
SwAV base [4] (800 ep) 53.70|+0.05  68.86 +0.03  75.307 53.897+0.13  70.227+0.05 49.08* 88.56*
SwAV continued (810 ep) 53.69 +o0.05  68.87 +0.04  75.32 +o0.01 - - - -
SwAV+ E2MC [ours] (810 ep) 55.27 +o0.07 68.98 +to.02 75.41 +o.02 53.94 +0.30  70.32 +0.05 49.72 +0.20 88.69
SimSiam base [5] (100 ep) 43.71 +0.04  60.15 +o0.02  68.37" - - 38.75 84.62
SimSiam continued (110 ep) 43.78 +0.05  60.23 +0.08  68.45 +0.08 - - - -
SimSiam+ E2MC [ours| (110 ep)  43.78 +0.06  60.23 +0.07  68.52 +0.05 — — 38.99 020  84.54
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