
Recursive Decomposition with Dependencies
for Generic Divide-and-Conquer Reasoning

Sergio Hernández-Gutiérrez Minttu Alakuijala Alexander V. Nikitin Pekka Marttinen

Overview

We introduce Recursive Decomposition with Dependencies (RDD), a scalable divide‐and‐conquer
method for solving reasoning problems with Large Language Models (LLMs)

consists of the following steps: decompose→ schedule→ solve recursively→ merge
requires less supervision than prior decomposition approaches
directly applicable to a new problem class without task‐specific guidance
supports sub‐task dependencies, ordered execution of sub‐tasks and error recovery from mistakes
made in previous steps
outperforms other methods in a compute‐matched setting as task complexity increases,
while also being more computationally efficient

Recursive Decomposition with Dependencies (RDD)

We will refer to the initial problem provided by the user as the root problem x0 ∈ T l, where T is a set of
tokens, and l is the length of the prompt. Our method consists of three steps:

1. Decomposition: The root problem is recursively decomposed into sub‐problems by prompting the
LLM with the decomposition meta‐task. The model generates either a list of sub‐problems or the
response “This is a unit problem.”

2. Unit‐solving: Unit cases can be solved with either direct input‐output prompting, any other
reasoning method, or an external tool.

3. Merging: For each set of already‐solved sub‐problems, we prompt the LLM to merge their solutions
to solve their parent problem; we perform this process until we reach the root problem, at which
point we obtain the final solution to x0 via the last merging step. The model is also encouraged to fix
any erroneous sub‐solutions at merging time.

Decomposition Unit-solving Merging

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: NULL

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: NULL

Problem: In which
country is
Tyrnava located?
Solution: NULL

Problem: In which
country is Tindaya
located?
Solution: NULL

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: NULL

Problem: In which
country is Tindaya
located?
Solution: Spain

Problem: In which
country is Tyrnava
located?
Solution: Finland

Problem: In which
country is Tindaya
located?
Solution: Spain

Problem: In which
country is Tyrnava
located?
Solution: Finland

Problem: Are Tyrnava
and Tindaya in the
same country?
Solution: No

Modeling sub‐problem dependencies: We ask the model to
assign a unique ID to each sub‐problem. We also encourage
the model to cross‐reference solutions of other
sub‐problems by their IDs. The specified dependencies
correspond to a directed acyclic graph (DAG).

Scheduler: The scheduler defines the execution order of the
decomposition, unit‐solving, and merging steps (with
ScheduleBFS). For a parallelized implementation, the
scheduler synchronizes the execution of dependent
sub‐problems.

Information flow: When prompting for a decomposition,
only the current problem description is provided to the
model, along with a description and a set of demonstra‐
tions of the meta‐task (e.g., decomposition or merging). We
do not include the history of ancestor problem descriptions,
which increases in size with the depth of the recursion
process. In the merging step, the decomposition of the
current level and its sub‐solutions are provided.

Algorithm 1 ScheduleBFS
Input: problem

1: unsolved← empty queue
// If problem depends on other sub‐tasks, solve them first

2: for dependency ∈ problem.dependencies do
3: ScheduleBFS(dependency)
4: end for
// Decompose the input problem

5: sub‐problems← Decompose(problem)
6: for sub‐problem ∈ sub‐problems do
7: Add sub‐problem to unsolved
8: end for
// Decompose each sub‐problem

9: while unsolved is not empty do
10: next‐problem← unsolved.front
11: for dependency ∈ next‐problem.dependencies do
12: ScheduleBFS(dependency)
13: end for
14: sub‐problems← Decompose(next‐problem)
15: for sub‐problem ∈ sub‐problems do
16: Add sub‐problem to unsolved
17: end for
18: end while

// Apply unit‐solving and merging with depth‐first‐search
19: return ScheduleDFS(problem, [])

Recursive decomposition of a problem with dependencies

Relationship legend:
Sub-problem

Dependency

Problem: <ROOT> Substitute each word for its
length plus one, and then reverse the list: [Lucy,
Abdou, Olivier]. Finally, return the first two items.
Solution: [8, 6]

Problem: <P-2> Reverse
the list: {P-1}.
Solution: [8, 6, 5]

Problem: <P-1.2>
What is the length of
the word “Abdou”?
Solution: 5

Problem: <P-1.1>
What is the length of
the word “Lucy”?
Solution: 4

Problem: <P-1> Substitute each word for its
length plus one: [Lucy, Abdou, Olivier].
Solution: [5, 6, 8]

Problem: <P-1.3>
What is the length of
the word “Olivier”?
Solution: 7

Problem: <P-1.4> Add
one to each element in
[{P-1.1}, {P-1.2}, {P-1.3}].
Solution: [5, 6, 8]

Related works

Decomposition as a tree: Tree of Thoughts [1] builds a tree; however, it represents a sampling process, not
a recursive decomposition. Divide‐and‐Conquer prompting [2] applies a tree‐like recursive decomposition
strategy, without supporting sub‐problem dependencies.

Decomposition as a graph: Although DecomP [3] also implicitly models the solving process as a DAG via
tool usage, it performs steps in sequence in a chain‐like fashion (preventing parallelization), and its structure
needs to be demonstrated by the user for every problem class, and it does not model dependencies between
sub‐problems. Graph of Thoughts [4] explicitly uses a DAG, but both its structure and the meaning of the
nodes must be provided by the user for every problem instance.

Generic applicability: Reasoning methods resulting in complex computational graphs [1, 3, 4] often require
extensive user‐generated input to model the reasoning process. In contrast, RDD can model complex
reasoning structures without unrealistic data requirements at runtime.

Parallelization capabilities: Similar to Skeleton‐of‐Thought (SoT; [5]), we enable efficient decoding by
identifying independent reasoning steps that can be computed in parallel. However, SoT does not
decompose reasoning chains. Sequential decomposition methods [3] do not support parallelization.

Experiments

Setup: We compare against Chain‐of‐Thought (CoT; [6]) and Least‐to‐Most prompting (LtM; [7]). We use
binary search self‐consistency (SC; [8]) to align the amount of computation available to each method. We
consider benchmark tasks of increasing difficulty. The tasks are:

Letter concatenation: concatenate the character at position i in every string of the input array.

Length reversal: replace each string in the input array for its length, and reverse the resulting array.

Transition points: We define the functions predicting the accuracy of the decomposition, unit‐solving, and
merging steps as ϕd (X0) , ϕu (X0), ϕm (X0) ∈ [0, 1], respectively, where X0 is a random variable from the
domain Pc0,n0, the set of root problem instances x0 belonging to problem class c0 and with difficulty of n0.
We then define ϕRDD (X0) to be the overall accuracy of RDD.

We hypothesize the existence of a performance transition point at within‐class difficulty n∗, after which
ϕRDD (c0, n0) ≥ ϕu (c0, n0) will hold ∀n0 ≥ n∗. We empirically observe such transition points.

Comparison between RDD, CoT+SC and LtM+SC
RDD uses CoT or LtM at the unit case. All reported numbers are averages over 100 input problems.

5 10 20 50 70 90
Number of elements

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

CoT+SC
LtM+SC

RDD+LtM (ours)

(a) Letter concatenation (task‐specific examples)

5 10 20 50 70 90
Number of elements

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

CoT+SC RDD+CoT (ours)

(b) Letter concatenation (generic examples)

3 5 7 10 15 20
Number of elements

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CoT+SC RDD+CoT (ours)

(c) Length reversal (generic examples)

Conclusions

Through our empirical evaluation, we have demonstrated the following advantages:

Our approach, RDD, increases accuracy in complex reasoning problems over state‐of‐the‐art
methods in a compute‐matched setting.
The recursive decomposition technique augments the model’s reasoning abilities even without any
task‐specific data.
Our method reduces the time to reach a solution by generating fewer output tokens;
parallelization enables a further speedup.
RDD reduces the average number of tokens per call, lessening strain on the context window.

References

[1] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R. Narasimhan. Tree of Thoughts: Deliberate Problem
Solving with Large Language Models. In NeurIPS, 2023.

[2] Yizhou Zhang, Lun Du, Defu Cao, Qiang Fu, and Yan Liu. An examination on the effectiveness of divide‐and‐conquer prompting in large language
models. ArXiv, 2024.

[3] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish Sabharwal. Decomposed Prompting: A Modular
Approach for Solving Complex Tasks. In ICLR, 2022.

[4] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom‐
ski, Piotr Nyczyk, and Torsten Hoefler. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. In AAAI, 2024.

[5] Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton‐of‐Thought: Prompting LLMs for Efficient Parallel Generation.
In ICLR, 2023.

[6] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. Chain‐of‐Thought Prompting
Elicits Reasoning in Large Language Models. In NeurIPS, 2022.

[7] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. Least‐to‐Most Prompting Enables Complex Reasoning in Large Language Models. In ICLR, 2022.

[8] Xuezhi Wang, JasonWei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self‐Consistency Improves
Chain of Thought Reasoning in Language Models. In ICLR, 2022.

