
Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning

Motivation and Contribution

Background
- Iterative Improvement: An iterative approach proposes a dynamic 
and continuous refinement process. It involves a cycle that begins 
with the current policy, progresses through the collection and analysis 
of data to generate new (preference) data, and uses this data to 
update the policy.
- AlphaZero: It combines the strengths of neural networks, RL 
techniques, and Monte Carlo Tree Search (MCTS). The integration of 
MCTS as a policy improvement operator that transforms the current 
policy into an improved policy.

Challenges in Applying MCTS to LLM Reasoning
- Granularity: The instance-level approach employs sparse 
supervision, which can lose important information and may not 
optimally leverage the potential of MCTS in improving the LLMs.
- Critic/Reward Function: A reliable function is crucial for providing 
meaningful feedback on different rollouts generated by MCTS, thus 
guiding the policy improvement process.
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🤔  Research Question

With step-level MCTS providing a more granular supervision, 
plus self-evaluation to enhance step-level assessment, 

can we collect fine-grained preference data of better quality 
to enhance model reasoning?

Part One: MCTS for Step-Level Data Collection
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Experiments
Commonsense Reasoning: assess the generalizability of our method 
in learning various reasoning tasks through self-distillation.

Backup. Once a terminal state is reached, we carry out a 
bottom-up update from the terminal node back to the root.

Part Two: Iterative Preference Learning
Data Selection. We select the candidate steps of highest and 
lowest Q values as positive and negative samples at each tree 
depth, respectively. The parent node selected at each tree 
depth has the highest value calculated by multiplying its visit 
count and the range of its children nodes’ visit counts, indicating 
both the quality and diversity of the generations.

Conservative DPO. We use the visit counts simulated in MCTS 
to apply adaptive label smoothing on each preference pair.

Select. To navigate the trade-off between exploring new nodes 
and exploiting visited ones, we employ the Predictor + Upper 
Confidence bounds applied to Trees (PUCT).

Expand. Expansion occurs at a leaf node during the selection 
process to integrate new nodes and assess rewards. Reward 
computation merges outcome correctness with self-evaluation.

📌  Our method achieves significant 
improvement compared to baselines across 
various datasets, including ARC-C, AI2Sci-mid, 
and SciQ.

🤔  The modest performance gain on CSQA may 
attribute to two reasons:
- CSQA questions tend to rely more on System 1;
- The base model forgets specific knowledge or 
ways to utilize it for CSR after SFT training.

Arithmetic Reasoning: evaluate whether our method enhances reasoning 
abilities on specific arithmetic tasks.

• NR: w/o reward model

• OG: on-policy generation

• OF: online (on-policy) feedback

• NS: w/ negative samples

📌  When base model can produce reasoning chains with high quality, 
the online and offline settings perform comparably.

📌  Further tuning on arithmetic data may cause overfitting, leading to
- weaker exploration ability → lower diversity in generated data
- stronger restriction from the KL regularization for not deviating a lot 
from the base SFT distributions. 

Oracle-Guided Self-Evaluation. The G.T. (example) answer is 
crucial to ensure the reliability of self-evaluation.


