
Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning

Motivation and Contribution

Background
- Iterative Improvement: An iterative approach proposes a dynamic
and continuous refinement process. It involves a cycle that begins
with the current policy, progresses through the collection and analysis
of data to generate new (preference) data, and uses this data to
update the policy.
- AlphaZero: It combines the strengths of neural networks, RL
techniques, and Monte Carlo Tree Search (MCTS). The integration of
MCTS as a policy improvement operator that transforms the current
policy into an improved policy.

Challenges in Applying MCTS to LLM Reasoning
- Granularity: The instance-level approach employs sparse
supervision, which can lose important information and may not
optimally leverage the potential of MCTS in improving the LLMs.
- Critic/Reward Function: A reliable function is crucial for providing
meaningful feedback on different rollouts generated by MCTS, thus
guiding the policy improvement process.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan
Timothy Lillicrap, Kenji Kawaguchi, Michael Shieh

🤔 Research Question

With step-level MCTS providing a more granular supervision,
plus self-evaluation to enhance step-level assessment,

can we collect fine-grained preference data of better quality
to enhance model reasoning?

Part One: MCTS for Step-Level Data Collection

Follow me on X
👉

@sigrid_xie

Paper 👉

MCTS-Enhanced Iterative Preference Learning

Experiments
Commonsense Reasoning: assess the generalizability of our method
in learning various reasoning tasks through self-distillation.

Backup. Once a terminal state is reached, we carry out a
bottom-up update from the terminal node back to the root.

Part Two: Iterative Preference Learning
Data Selection. We select the candidate steps of highest and
lowest Q values as positive and negative samples at each tree
depth, respectively. The parent node selected at each tree
depth has the highest value calculated by multiplying its visit
count and the range of its children nodes’ visit counts, indicating
both the quality and diversity of the generations.

Conservative DPO. We use the visit counts simulated in MCTS
to apply adaptive label smoothing on each preference pair.

Select. To navigate the trade-off between exploring new nodes
and exploiting visited ones, we employ the Predictor + Upper
Confidence bounds applied to Trees (PUCT).

Expand. Expansion occurs at a leaf node during the selection
process to integrate new nodes and assess rewards. Reward
computation merges outcome correctness with self-evaluation.

📌 Our method achieves significant
improvement compared to baselines across
various datasets, including ARC-C, AI2Sci-mid,
and SciQ.

🤔 The modest performance gain on CSQA may
attribute to two reasons:
- CSQA questions tend to rely more on System 1;
- The base model forgets specific knowledge or
ways to utilize it for CSR after SFT training.

Arithmetic Reasoning: evaluate whether our method enhances reasoning
abilities on specific arithmetic tasks.

• NR: w/o reward model

• OG: on-policy generation

• OF: online (on-policy) feedback

• NS: w/ negative samples

📌 When base model can produce reasoning chains with high quality,
the online and offline settings perform comparably.

📌 Further tuning on arithmetic data may cause overfitting, leading to
- weaker exploration ability → lower diversity in generated data
- stronger restriction from the KL regularization for not deviating a lot
from the base SFT distributions.

Oracle-Guided Self-Evaluation. The G.T. (example) answer is
crucial to ensure the reliability of self-evaluation.

