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originate in Vancouver, CA with a destination of Tokyo, JP”

FLIGHT AIRPORT PLANE
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AIRLINE
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HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer
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Additionally, the query optimizer must still choose the physical operators for each join, 
that is, how to perform each join – hash join, nested for loop, sort then merge
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Background: Why is query optimization difficult?

• The number of possible query plans 
follows Catalan numbers

• At 𝑛 = 19 there are more than 2!" query 
plans 
• Traditional QOs use complex heuristics to 

eliminate very bad plans

• But often select suboptimal plans, leaving 
performance on the table

Note: Figures from Machine Learning for Query Optimization by Ryan Marcus (https://rm.cab/brown22)
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Background: SQL hints can be used to improve performance 

• Hints are optional clauses that can be inserted into a query to guide 
the optimizer into generating plans with specific characteristics 

• SQL hints provide a coarse-grained way to influence a query’s 
execution plan, often chosen based on a priori knowledge of the data
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Background: SQL hints can be used to improve performance 

• Selecting hints can be extremely complicated for users, and providing the 
optimizer with incorrect hints can severely degrade query latency

• Different hints improve performance of some queries and degrade 
performance of others – this difference is often asymmetric
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“Find all flights by Air Canada that originate in Vancouver, CA with a destination of Tokyo, JP”
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/*+ Parallel(ap_1, 3, hard) Parallel(ap_2, 3, hard) */
SELECT *
FROM flight AS fl, 
 plane AS pl, airline AS al
 airport AS ap_1, airport AS ap_2, 
WHERE al.name = “Air Canada”
 AND ap_1.city = “Vancouver”
 AND ap_1.cntry = “CAN”
 AND ap_2.city = “Tokyo”
 AND ap_2.cntry = “JAP”
 AND pl.airline = al.ar_id
 AND fl.orig = ap_1.ap_id
 AND fl.dest = ap_2.ap_id
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• Modern methods use supervised learning[1], RL[2], or hybrid approaches[3], but perform 
sophisticated feature engineering on internal database statistics

Current State-of-the-Art

[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023. 
[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.
[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.
[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.
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Simplify feature engineering and learn to steer the query optimizer using hints!
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LLMSteer: A simpler approach to query optimization using 
large language models

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.
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1. ~3000 SQL queries from the join order[1] 
and cardinality estimation[2] benchmarks

2. Gathered 48 well-known PostgreSQL hints 
used in prior work[3-4]

3. Executed queries 5 times per hint – mean 
latency was used for analysis 

4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.
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1. Embed raw SQL queries using an LLM

2. Truncate embeddings using PCA (120 
dimensions captures ~90% of variance)

3. Trained binary classifiers to steer between 
the Default Plan and the Alternative Plan 
produced by the selected hint*
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4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

1. Embed raw SQL queries using an LLM

2. Truncate embeddings using PCA (120 
dimensions captures ~90% of variance)

3. Trained binary classifiers to steer between 
the Default and Alternative Plans produced 
by the selected hint*

1. Stratified cross-validation

2. Query Optimization Metrics:
I. Cumulative execution time of 

queries (total latency)
II. 90th percentile latency of queries 

(P90 latency)

3. Classification Metrics:
I. Recall
II. AUROC
III. Accuracy

LLMSteer
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[−0.04813609,−0.43741802,… ,−0.28336727, 0.98100264]

d-dimensional query embedding 

[0.74970049,−1.36168475,… , 0.78163968, 0.66720773]

120 principal components
Alternative Plan

1

2 Truncate 
embeddings

Default Plan

4

Correct Prediction
3 Input to classifier

LLM 
embedding

Predict hint & 
select query plan
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Experiment 1: Comparative performance of LLMSteer



Empirical CDF of latency across cross-validation testing workloads
• Purple indicates selecting the default plan for all queries
• Orange indicates selecting the alternative plan for all queries
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Experiment 1: Comparative performance of LLMSteer

P90

P50

I) Gap to 100% workload
II) Gap to P90

• LLMSteer outperforms both the default and alternative plans at the higher end of the distribution, 
achieving a lower P90 (II) and saturating just as fast the Alternative plan (I)



• LLMSteer improves on the alternative plan, lowering the performance gap to the default plan, 
capturing more of the total latency earlier and improving the median latency
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Experiment 1: Comparative performance of LLMSteer

P90

P50
III) Gap to P50

IV) Gap to 50% workload
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Experiment 1: Comparative performance of LLMSteer

• LLMSteer falls short of the optimal steering strategy, but effectively combines the benefits of the 
default PostgreSQL plan and the alternative

P90

P50

IV) Gap to 50% workload

III) Gap to P50

II) Gap to P90
I) Gap to 100% workload
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Experiment 1: Comparative performance of LLMSteer

• The system can be seen as trading a small increase in median latency for a large reduction in P90 and 
total latency, a trade-off that is worthwhile in most practical applications

P90

P50

IV) Gap to 50% workload

III) Gap to P50

II) Gap to P90
I) Gap to 100% workload
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Cautious Optimism and Next Steps

Challenges and Limitations
• Internet-scale language models

– Were LLMs trained on the JOB and CEB 
benchmark data?

– More broadly, how do we create 
benchmarks in this new LLM-era?

• Integration of LLMs into query pathways
– No longer need to materialize query plans 

to perform optimization

– No longer require internal database 
statistics

– Must now integrate LLMs into query 
workflows and perform inference



• We did not expect this to work, but clearly 
LLMs can represent something meaningful 
about program semantics that is helpful for 
query optimization
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Cautious Optimism and Next Steps

Challenges and Limitations Reasons for Optimism
• Internet-scale language models

– Were LLMs trained on the JOB and CEB 
benchmark data?

– More broadly, how do we create 
benchmarks in this new LLM-era?

• Integration of LLMs into query pathways
– No longer need to materialize query plans 

to perform optimization

– No longer require internal database 
statistics

– Must now integrate LLMs into query 
workflows and perform inference



• We did not expect this to work, but clearly 
LLMs can represent something meaningful 
about program semantics that is helpful for 
query optimization

• Quantization may play an essential role in 
improving latency and developing LLM-
powered QOs
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Challenges and Limitations Reasons for Optimism
• Internet-scale language models

– Were LLMs trained on the JOB and CEB 
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• Integration of LLMs into query pathways
– No longer need to materialize query plans 
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– No longer require internal database 
statistics

– Must now integrate LLMs into query 
workflows and perform inference
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PostgreSQL default plan the system reduces total and P90 latency by 
72% and reduces median latency by 35% relative to the alternative.
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Summary

• We introduce LLMSteer, a simpler approach to query optimization 
using LLMs rather than internal database statistics.

• LLMSteer is effective on two query benchmarks – relative to the 
PostgreSQL default plan the system reduces total and P90 latency by 
72% and reduces median latency by 35% relative to the alternative.

There are still far more open questions than answers!



Thank you! Questions?

Our group: https://db.cis.upenn.edu
Our code: https://github.com/peter-ai/LLMSteer
Reach me at: peterai@seas.upenn.edu

ArXiv Code Me
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Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting
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Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting
• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

“SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND 
t.id = mc.movie_id AND cn.id = mc.company_id;”
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Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting
• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

“SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND 
t.id = mc.movie_id AND cn.id = mc.company_id;”

“SELECT t.title AS movie, 
 cn.country_code AS country 
FROM company_name AS cn, 
 movie_companies AS mc, 
 title AS t 
WHERE t.production_year > 2005 
 AND t.id = mc.movie_id 
 AND cn.id = mc.company_id;”
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Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting
• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax C introduces newline characters and uses tabs for indentation

“SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND 
t.id = mc.movie_id AND cn.id = mc.company_id;”

“SELECT t.title AS movie, 
 cn.country_code AS country 
FROM company_name AS cn, 
 movie_companies AS mc, 
 title AS t 
WHERE t.production_year > 2005 
 AND t.id = mc.movie_id 
 AND cn.id = mc.company_id;”

“SELECT t.title AS movie, 
\tcn.country_code AS country 
FROM company_name AS cn, 
\tmovie_companies AS mc, 
\ttitle AS t 
WHERE t.production_year > 2005 
\tAND t.id = mc.movie_id 
\tAND cn.id = mc.company_id;“
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Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting

a) Trained on Syntax A

• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax C introduces newline characters and uses tabs for indentation

The original SQL queries were single line statements – we evaluate LLMSteer on query 
formats that align more closely with how queries are written in production systems



66

Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting

a) Trained on Syntax A b) Trained on Syntax B c) Trained on Syntax C

The original SQL queries were single line statements – we evaluate LLMSteer on query 
formats that align more closely with how queries are written in production systems

• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax C introduces newline characters and uses tabs for indentation


