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= Hyperbolic neural networks (HNNs) are a emerging field Al that
everage hyperbolic geometry to enhance neural network
nerformance.

= Theoretical foundations of HNNs are still not fully understood.

= Applying concepts from dynamical systems and ergodic theory
to the convergence of neural networks can lead to significant
Improvements.

= Ergodic theory also helps mitigate chaotic behavior during
training, leading to more stable and predictable training
dynamics.

Hyperbolic Geometry

= Understanding how hyperbolic space is represented and
visualized using models is crucial.
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Figure 1:Different curvatures in geometry. At the bottom we have hyperbolic
spaces (left) and the Poincaré ball model (right).

= \We consider the set
L":={zx e R"": —a2 + " 27 = —1, 7y > 0} and we fix its
originy = (1,0,...,0) € L™

" In this setting the exponential map exp,: T, L" — IL" Is
invertible and its inverse is denoted by log,: " — T,IL".

N. Alvarado*s S. Burgos?

Hyperbolic Neural Networks

= Fora,b,x € L" and a € R, we define ¢ and ® by
a ® b= exp,(log,a +log,b) and a ® x = exp,(alog,()).

= We define a Hyperbolic Neural Network as
f(z)= fio fao---0 fi(z)
filr) =0 (WPz ®b;), 1<i<k.

where W; € R™" b, € L™ and o Is the activation function.
Recall that we are always identifying 7,L" ~ R".

Ergodic Theory Basics

= let (M, B, 1, T) be an ergodic dynamical system. A subadditive
cocycle over T'is a measurable function ¢ : M x Ny — R
satistying

dlw,n+m) < ¢(w,n)+ o(T"w,m) forallw e M and n,m > 0.

" let X CL"beacone. Amap f: X — X Is called
subhomogeneous if for every x € X and A € (0,1) we have

fA®z) < A® f(x), whenever the order is possible.

* Let f: T,L" — T,IL" be subhomogeneous. Then, the inducead
map on the hyperboloid f®: L" — LL" is also subhomogeneous.

Main Results

" let Y = exp, (X)), where X is the positive cone in R". Let
;Y — Y be a sequence of order preserving and
subhomogeneous maps such that 75, := log, o f,,, o exp,, IS a
stationary sequence of maps in X. Let z,, = fifo--- fin(zo) fOr a
fixed zg € Y. Then, we have

(\/? arccosh(zm(O))Zm(i)) L/m .
Vizml? =1

lim sup
M— 00 1<i<n

= et (2, dy) be a compact metric space and consider a stationary
sequence of homeomorphisms 7;,: €2 — €. Then, almost surely
there i1s a number A such that

1/m

1, ( do(T Ty - - Ty, Ty Ty - -Tw)) e
im | sup = e,

m—00 THY d()(xay)
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Main Results

= Let (M, g) be a Riemannian manifold. Fixy € M and r > 0 such
that ¢ :=exp,: B,(0) C TyM — V = exp,(B,(0)) is 2
diffeomorphism. Consider a sequence f,,: V — V consisting of
maps of the form f(z) = o(W 'a(We~1(z) + b)), where
W1 <1, 0is 1-Lipschitz componentwise and b € T, M satisfy
£.(V) C V, and such that f,(v) = W o(W,v +b,)) is a
stationary sequence of layer maps in R™. Then, as m — oo,
almost surely there exist z € V' such that

i@) fifo- fm(20) — 2.
m

= An immediate application of this result is use it in the
hyperboloid model (or in any isometric model, e.g. the Poincaré
ball model).

Conclusions and future work

= [n this work, we extend neural network convergence results
from Euclidean spaces to Riemannian manifolds.

= We proved the convergence of HNNs under certain conditions,
particularly in the Lorentz model, ensuring their stability and
predictability.

= This work suggests that understanding parameter trajectories
can lead to new regularization methods that prevent overfitting
and enhance the generalization of neural networks.

= Empirical validation of the theorems is necessary to confirm
their practical applicability and effectiveness in real-world
scenarios.

= By using the exponential map and its inverse (when defined), it
would be interesting to study neural networks in specific
manifolds, e.g. the sphere, the torus, etc.
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