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Drug discovery Al datasets and benchmarks have not traditionally included single-
cell analysis biomarkers. While benchmarking efforts in single-cell analysis have
recently released collections of single-cell tasks, they have yet to comprehensively
release datasets, models, and benchmarks that integrate a broad range of therapeutic
discovery tasks with cell-type-specific biomarkers. Therapeutics Commons (TDC-
2) presents datasets, tools, models, and benchmarks integrating cell-type-specific
contextual features with ML tasks across therapeutics. We present four tasks
for contextual learning at single-cell resolution: drug-target nomination, genetic
perturbation response prediction, chemical perturbation response prediction, and
protein-peptide interaction prediction. We introduce datasets, models, and bench-
marks for these four tasks. Finally, we detail the advancements and challenges
in machine learning and biology that drove the implementation of TDC-2 and

how they are reflected in 1ts architecture, datasets and benchmarks, and foundation
model tooling.
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Therapeutic Foundation Models
Foundation models trained on TDC have
been shown to generalize across several

therapeutic tasks

LLM-based Workflows in
biomedicine

LLMs succeed at using chemistry tools for
tasks. LLM multi-agent frameworks have
succeeded at automating single-cell analysis

tasks

Single-cell Data and Machine
Learning

Training foundation models on large single-
cell atlases have shown a potential to
advance cell type annotation and matching of
healthy-disease cells to study cellular
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In therapeutics, there is evidence that the
effects of drugs can vary depending on the
type of cell they are targeting and where

specific proteins are acting
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Figure |: Overview of TDC-2. TDC-2 introduces a multimodal retrieval API powering ML-task-
driven [11] datasets [69, 4,67, 107, 91,90, 14,15, 109, [108]and benchmarks spanning 10+ new
modalities and 5 state-of-the-art machine learning tasks (section|7.2), including 4 contextual Al
tasks: TDC.scDTI (section|3.1), single-cell genetic perturbation response prediction (section 3.2.1),
single-cell chemical perturbation response prediction (section|3.2.2), and single-cell protein-peptide
interaction prediction (section 3.3). Model benchmarks highlighting biomedical Al challenges in
OOD Generalization [26, 27, 120, 14] and evaluation [4, 30] of cell-type-specific contextual Al
models are introduced.




Introduction
Background on TDC

Enable algorithmic and scientific advance in therapeutic science

The Commons lies at the nexus between artificial intelligence and drug discovery. Biologists and biochemists can pose ML tasks

and identify relevant datasets that are carefully processed and integrated into Commons and formulated as scientifically valid ML

tasks. ML scientists can rapidly obtain these tasks and develop ML methods to advance the therapeutic task past the state of the
art and open up new opportunities.

@ Identify meaningful Design powerful @
tasks and datasets o~ Al/ML models
Domain THERAPEUTICS Al/ML
scientists DATA COMMONS scientists

Facilitate algorithmic and scientific advance in therapeutics
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TDC in the drug discovery pipeline
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Introduction

TDC at the intersection of
problems, products, and pipelines
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Introduction
TDC Datasets
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Introduction
TDC API

Data Loaders

TDC provides intuitive, high-level APIs for both beginners and experts to create ML models in Python. Building off the modularized
"Problem--ML Task--Dataset" structure, TDC provides a three-layer API to access any ML task and dataset.

tdc single pred ADME Caco?2

As an example, to obtain the Caco2 dataset from ADME task inthe single-instance prediction problem do as follows:

from tdc.single_pred import ADME
data = ADME(name = 'Caco2_Wang')
df = data.get_datal()

splits = data.get_split()

The variable df is a Pandas object holding the entire dataset. By default, the variable splits is a dictionary with keys train , val,
and test whose values are all Pandas DataFrames with Drug IDs, SMILES strings and labels. For detailed information about outputs,
see Datasets documentation.

The user only needs to specify "Problem -- ML Task -- Dataset." TDC then automatically retrieves the processed ML-ready dataset from
the TDC server and generates a data object, exposing numerous data functions that can be directly applied to the dataset.
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Single-cell Therapeutic Al
Tasks

drug-target nomination, genetic/chemical
perturbation response prediction, protein-
peptide binding affinity




TDC.scDTI Single-cell
Drug-Target Identification
(Nomination)

Motivation

In therapeutics, there is evidence that the
effects of drugs can vary depending on the
type of cell they are targeting and where
specific proteins are acting.

Definition

The predictive task is defined as learning an
estimator for a disease-specific function of a
target protein and cell type outputting
whether the candidate protein is a therapeutic
target in that cell type.

Evaluation

Models' performance is measured across sets
of disease-specific proteins and cells. We
compute contextualized metrics at top-
performing cell types.

y= fo(t €T, ceC).

TDC.scDTI task formulation



Contextualized Metrics

Context-specific metrics are defined to measure model performance at
critical biological slices, with our benchmarks focused on measuring cell-
type-specific model performance. For single-cell drug-target nomination,
we measure model performance at top-performing cell types.

Context-specific AUROC

To calculate the AUROC for the top K performing cell types, we first need to determine which cell
types achieve the highest AUROC scores. After selecting the top-performing cell types, we weigh
each top-performing cell type’s AUROC score by the number of samples in that cell type.
We denote:

D= {(zi,yi,ci)}, VieES (26)
Here, [ denotes the dataset where x; denotes the feature vector, y; is the true label, and ¢; 1s the cell

type for sample i from 5. We further denote ', the set of unique cell types. Then, the AUROC for a
specific cell type, AUROC ., is computed as:

AUROC, = AUROC(D,) (27)

Here, D, = {(x;, y;)|c; = ¢} is the subset of the dataset for cell type ¢ and AU ROC( D, ) represents
the AUROC score computed over this subset. Once these are computed, values can be sorted in
descending order to select the top X cell type with highest AUROC value.

Cx ={e, e, e} st. AUROC, > AUROC,,,¥i < K,j > K (28)

The weighted AUROC for the top K cell types is given by weighting each cell type’s AUROC by the
proportion of its samples relative to the total samples in the top K cell types.

> cecy AUROC, x |D,|
E:'I’:f'h‘ |Df|

This measure represents a balance between representation and performance of the cell types.

AU Rn{f’ﬂ}j:ﬁ' - (29)

Context-specific Average Precision at rank R (AP@R)

In our study, we let i = 5 and compute AP@35 for the top K performing cell types. We denote
dataset and samples as above.

D= {(xi, yi,c5)}, Vi€ES (30)
Here, [ denotes the dataset where r; denotes the feature vector, y; 15 the true label, and ¢; 1s the cell
type for sample i from 5. We further denote (7, the set of unique cell types. The samples of each cell
type, . = (4, y;)|ci = e, can be sorted based on the score output by the model for said sample
fla;), with average precision at rank type computed accordingly.

D} ={zy,...,x5} st. flz;) = flx;),¥i<5,j>5,¢,=cc;=¢ (1)
AP@5, = AP({y1,...,us}. {flxz1)...., flxs)}), x; € D? (32)
The average precision at rank k at Top X cell types can then be defined as:
Ck ={c1,62,...,cx} st. APQ), > APQ5. Vi< K,j> K (33)
APQ@Sr,p = mean({APQ5,,}, Ve € Ck) (34)

AP summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold,
with the increase in recall from the previous threshold used as the weight. Some key advantages
of using AP@K include robustness to (1) varied numbers of protein targets activated across cell
type-specific protein interaction networks and (2) varied sizes of cell type-specific protein interaction
networks [4]. We compute AP using the scikit package as specified in https://scikit-learn.o
rg/1.5/modules/generated/sklearn.metrics.average_precision_score.html.



(Li, Michelle, et al.)

Dataset Description: To curate target information for a therapeutic area, we examine the drugs indicated for
the therapeutic area of interest and its descendants. The two therapeutic areas examined are rheumatoid
arthritis (RA) and inflammatory bowel disease. Positive examples (i.e., where the label y = 1) are proteins
targeted by drugs that have at least completed phase 2 of clinical trials for treating a specific therapeutic area.
As such, a protein is a promising candidate if a compound that targets the protein is safe for humans and
effective for treating the disease. We retain positive training examples activated in at least one cell type-specific
protein interaction network. We define negative examples (i.e., where the label y = 0) as druggable proteins
that do not have any known association with the therapeutic area of interest according to Open Targets. A
protein is deemed druggable if targeted by at least one existing drug. We extract drugs and their nominal
targets from Drugbank. We retain negative training examples activated in at least one cell type-specific protein
Interaction network.

Task Description: Classification. Given the protein and cell-context, predict whether the protein is a
therapeutic target.

Dataset Statistics: The final number of positive (negative) samples for RA and IBD were 152 (1,465) and 114
(1,377), respectively. In PINNACLE, this dataset was augmented to include 156 cell types.

Dataset Split: coid protein split - We split the dataset such that about 80% of the proteins are in the training set,
about 10% of the proteins are in the validation set, and about 10% of the proteins are in the test set. The data
splits are consistent for each cell type context to avoid data leakage.

from tdc.resource.dataloader import Dataloader
data = DatalLoader(name="opentargets dti")
df = data.get data()

References:

11] LI, Michelle, et al. "Contextualizing Protein Representations Using Deep Learning on Protein Networks and
Single-Cell Data” bioRxiv (2023)

Dataset License: CC BY 4.0 US.




Benchmarked Models
PINNACLE (Li et al.), GAT (baseline)

Fig. 5: Performance of contextualized target prioritization for RA and IBD therapeutic
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Benchmarked Results
TDC.scDTIl Benchmark API

Table 1: Cell-type specific target nomination for two therapeutic areas, rheumatoid arthritis
(RA) and inflammatory bowel diseases (IBD). Cell-type specific context metrics (definitions in

section \72@

): AP@5 Top-20 CT - average precision at & = 5 for the 20 best-performing cell

types (CT); AUROC Top-1 CT - AUROC for top-performing cell type; AUROC Top-10 CT and
AUROC Top-20 CT - weighted average AUROC for top-10 and top-20 performing cell types,
respectively, each weighted by the number of samples in each cell type; AP@5/AUROC CF - context-
free AP@5/AUROC integrated across all cell types. Shown are results from models run on ten
independent seeds. N/A - not applicable.

Model AP@5 Top-20 CT | AUROC Top-1 CT | AUROC Top-10CT | AUROC Top-20CT || AP@5CF | AUROC CF
PINNACLE (RA) 0.913+0.059 0.765+0.054 0.676+0.017 0.647 +0.014 0.226+0023 | 0.510+0005
GAT (RA) N/A N/A N/A N/A 0.2204+0013 | 0.580+0.010
PINNACLE (IBD) 0.873+0.069 0.935+0.067 0.799+0.017 0.752+0.011 0.198+0013 | 0.500+0010
GAT (IBD) N/A N/A N/A N/A 0.200+0022 | 0.640+0017

from tdc.benchmark_group import scdti_group
group = scdti_group.SCDTIGroup()
train_val = group.get_train_valid_split()
tst = group.get_test() ["test"]
# train your model and teslt on the lest set
group.evaluate (preds)




TDC.PerturbOutcome
Single-cell Perturbation
Response Prediction

Genetic/Chemical

Motivation

Understanding and predicting transcriptional
responses to genetic or chemical perturbations
orovides insights into cellular adaptation and
response mechanisms.

Definition

To learn a regression model estimating the
perturbation-response gene expression vector
for a perturbation applied to a control cell.

Evaluation
We measure model generalization to unseen
perturbations and perturbation combinations.

Fig.1:scGen, amethod to predict single-cell perturbation response.

€1 = Jfo(p € P eg € Eg,c € C).

TDC.PerturbOutcome task
formulation



scPerturb

Dataset Description: The scPerturb dataset is a comprehensive collection of single-cell perturbation data,
harmonized to facilitate the development and benchmarking of computational methods in systems biology. It
includes various types of molecular readouts, such as transcriptomics, proteomics, and epigenomics. scPerturb
is a harmonized dataset that compiles single-cell perturbation-response data. This dataset is designed to
support the development and validation of computational tools by providing a consistent and comprehensive
resource. The data includes responses to various genetic and chemical perturbations, which are crucial for
understanding cellular mechanisms and developing therapeutic strategies. Data from different sources are
uniformly pre-processed to ensure consistency. Rigorous quality control measures are applied to maintain high
data quality. Features across different datasets are standardized for easy comparison and integration.

Task Description: Given cell-type-specific labels and a perturbation, predict the gene expression vector for that
cell.

Dataset Statistics: 44 publicly available single-cell perturbation-response datasets. Most datasets have on
average approximately 3000 genes measured per cell. 100,000+ perturbations.

Dataset Split: random spiit , Coid Cell Line Split , Cold Perturbation Spiit

from tdc.multi pred.perturboutcome import PerturbOutcome
data = PerturbOutcome(name = 'scperturb drug SrivatsanTrapnell282e@ sciplex2')
split = data.get split()

References:

Peidli, S, Green, T. D,, Shen, C,, Gross, T., Min, 1. K., Garda, S., Yuan, B., Schumacher, L., Taylor-King, J., Marks, D.,
Luna, A, Blithgen, N, & Sander, C. (2023). scPerturb: Harmonized Single-Cell Perturbation Data. https://
doi.org/10.1101/2022.08.20.504663

Fig. 1: Perturbation-response profiling for single cells.
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Benchmarked Models (Genetic
GEARS (Roohani et al.), CPA (Lotfollahi et al.), no-perturb (baseline

Fig. 1: GEARS combines prior knowledge with deep learning to predict

postperturbation gene expression.
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Benchmarked Results
TDC.GenePerturb Benchmark API

Table 2: Unseen genetic perturbation response prediction. We evaluate GEARS across the top 20
differentially expressed genes, based on the highest absolute differential expression upon perturbation,
for MSE (MSE@20DEG). Gene expression was measured in log normalized counts. In single-cell
analysis, a standard procedure i1s to normalize the counts within each cell so that they sum to a
specific value (usually the median sum across all cells in the dataset) and then to log transform the
values using the natural logarithm [26]. For both normalization and ranking genes by differential
expression, we utilized the Scanpy software. We used the sc.tl.rank_genes_groups() function with
default parameters in Scanpy, which employs a t-test to estimate scores. This function provides a
z-score for each gene and ranks genes based on the absolute values of the score. Genes showing a
significant level of dropout were not included in this metric.

Dataset Tissue Cell Line Method MSE@20DEG
Norman K562 K562 | lymphoblast | no-perturb 0.341+0.001
Norman K562 K562 | lymphoblast CPA 0.230+40.008

Norman K562 K562 | lymphoblast | GEARS 0.176+0.003

Replogle 562 K562 | lymphoblast | no-perturb 0.126+0.000
Replogle 562 K562 | lymphoblast CPA 0.126-+0.000
Replogle 562 K562 | lymphoblast | GEARS 0.109+0.004

Replogle RPE1 | RPE-I epithelial no-perturb 0.16440.000
Replogle RPE1 | RPE-I epithelial CPA 0.162+40.001
Replogle RPE1 | RPE-1 epithelial GEARS 0.110+0.003

L=

from tdc.benchmark_group import geneperturb_group
group = geneperturb_group.GenePerturbGroup()
train_val = group.get_train_valid_split()}

test = group.get_test()

# train your model and test on the test set
group.evaluate (preds)




Benchmarked Models (Chemical) D

ChemCPA (Hetzel et al.), Biolord (Piran et al.), scGen (Lotfollahi et al.), no-
perturb-information (baseline)

Figure 4. CPA extensibility enables predicting the response to unseen drugs.
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Benchmarked Results
TDC.ChemPerturb Benchmark API

Table 3: Unseen chemical perturbation response prediction. We have evaluated chemCPA utilizing
cold splits on perturbation type and show a significant decrease in performance for 3 of 4 perturbations
evaluated. We have also included Biolord [31] and scGen [72] for comparison. The dataset used

consists of four chemical (drug) perturbations from sciPlex2 [69] (BMS, Dex, Nutlin, SAHA).
sciPlex2 contains alveolar basal epithelial cells from the A549 (lung adenocarcinoma), K562 (chronic

myelogenous leukemia), and MCF7 (mammary adenocarcinoma) tissues. Our experiments rely on
the coefficient of determination ( R*) as the primary performance measure.

Drug Method R* (seen perturbations) | R* (unseen perturbations)
BMS Baseline 0.62040.044 NIA
Dex Baseline 0.603 L0052 IN/A
Nutlin Baseline 0.628 +0.036 N/A
SAHA Baseline 0.617+0027 N/A
BMS Biolord 0.939 +0.022 N/A
Dex Biolord 0.942 40028 N/A
Nutlin Biolord 0.928 +0.026 N/A
SAHA Biolord 0.980 -+ 0.005 NSA
BMS ChemCPA 0.943 4 0.006 0.906 + 0,006
Dex ChemCPA 0.88240.014 0.540 003
Nutlin | ChemCPA 0.925 40010 0.835 09
SAHA | ChemCPA 0.825 +0.026 0.690+0021
BMS scen 0.903 +0.030 N/A
Dex scGen 0.944 0018 N/A
Nutlin scOen (.891 +0.032 NSA
SAHA scGen 0.948 +0.034 N/A

from tdc.benchmark _group import counterfactual_ group

group = counterfactual group.CounterfactualGroup()

train, val = group.get_train_valid_split(remove_unseen=False)
test = group.get_test()

# train your model and test on the test set

group.evaluate (preds)




TDC.ProteinPeptide
Protein-Peptide Binding
Interaction Prediction

Motivation

Protein-peptide binding affinity prediction and

orotein-protein binding affinity prediction
involve similar underlying biological
interactions, but they differ significantly in their

complexity and the methods used to predict
them (Abdin, Osana et al., 2022).

Definition

To learn a binary classification model of a
protein-peptide interaction meeting specific

biomarkers.

Evaluation

We measure classi

metrics to unseen

fication performance

nroteins and peptides.
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TDC.TCREpitope TCR-Epitope
Binding Interaction Prediction

Challenges
The critical challenge in TCR-Epitope (Peptide-
MHC Complex) interaction prediction lies in
creating a model that can effectively
generalize to unseen TCRs and epitopes.
While TCR-H and TEINet have shown
improved performance on prediction for
Known epitopes, by incorporating advanced
features like attention mechanisms and
transfer learning, the performance
considerably drops for unseen epitopes.
Another challenge in TCR-Epitope interaction | -
dict ies in th hoi £ h ictic f Benchmarking datasets use three types of heuristics
prediction lies in the choice o ?UI’IStIC or for generating negative samples: random shuffling of
generating negative samples, with non- epitope and TCR sequences (RN), experimental
hinders often underrepresented or biased in negatives (NA), and pairing external TCR sequences
: . with epitope sequences (ET).
curated datasets, leading to inaccurate
predictions when generalized.
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Benchmarked Results
TDC.TCREpitope Benchmark API

Table 4: TCR-epitope binding interaction binary classification performance. All models perform

poorly under realistic but challenging RN and ET experimental setups. The best-performing model in
RN is AVIB-TCR, with an average of 0.576 (AUROC). The best-performing model in ET 1s MIX-TPI,

with an average of 0.700 (AUROC). For NA, 4 of 6 models achieve near-perfect AUROC.

Methods Experimental setup ACC Fl AUROC AUPRC

AVIB-TCR RN 0.570+0028 0.468+0086 0.576+0049 0.605+0.044
MIX-TPI RN 0.539+00390 0.408+0.122 0.558+0028 0.597+0.049
Net-TCR2 RN 0.52840.050 0.35440036 0.551+0042 0.554+0.075
PanPep RN 0.507+0028 047310039 0.535x0021  0.579+0.040
TEINet RN 0.45940.036 0.619+0036 0.5354+0029 0.581+0.043
TITAN RN 047640063  0.338+0.111  0.502+0066  0.523-+0.055
AVIB-TCR ET 0.611+0012 0.553+0020 0.683+0010 0.8154+0.006
MIX-TPI ET 0.652+0000 0.523+0035 0.703+0016 0.825+0.014
Net-TCR2 ET 0.621+0027 0.522+0020 0.674+0017 0.8104+0.016
PanPep ET 0.556+0.000  0.506+0011  0.638+0009 0.7534+0.009
TEINet ET 0.356+0008 0.512+0010 0.571+0009 0.646+0.011
TITAN ET 0.670+0.013 049240048 0.624+0021 0.733+0.018
AVIB-TCR NA 0.636+0062 0.197+0.169 0.94440021 0.949+0.023
MIX-TPI NA 0.952+0020 0.937+0.040 0.992+0002 0.995-+0.001
Net-TCR2 NA 0.655+0051 0.274+0.123 0973+0009 0.985+0.005
PanPep NA 0.419+0011  0.352+0006 0.611+0014  0.499+0.031
TEINet NA 0.413+0023 0.582+0023 0.973+0011  0.981+0.006
TITAN NA 0.695+0.050 0.404+0.141  0.629+0053  0.661-+0.040

from tdc.benchmark_group.tcrepitope_group import TCREpitopeGroup
group = TCREpitopeGroup()
train_val = group.get_train_valid_split()
test = group.get_test()
# train your model and test on the test set
group.evaluate (preds)




Multimodal Single-Cell
Retrieval API

We leverage the CZ CellXGene Census to
develop a TDC-2 Resource Model for
constructing large-scale single-cell
datasets that maps gene expression
profiles of individual cells across tissues,
healthy and disease state




TDC-2 <> CZ CELLXGENE Discover

Powered by TileDB

TDC-2 leverages the SOMA (Stack of
Matrices, Annotated) API, adopts TileDB-
SOMA for modeling sets of 2D annotated
matrices with measurements of features
across observations, and enables memory-
efficient querying of multiple distinct
single-cell modalities (i.e., scRNA-seq,
snRNA-seq), across healthy and diseased
samples, with tabular annotations of cells,
samples, and patients the samples come
from.

I0CZ CELL x GENE
Single-cell RNA

datasets

Census

Powered by [1‘.' ilE]
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Collection

-------------------------------------------------------- L/N
Census object -

SOMA: Data model and API spec for

"census_data”
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Collection
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Collection _ . Ay .
Experiment (is_a Collection)

SOMAEXxperiment: Multimodal
Container

“summary” Ms["RNA"]

DataFrame Measurement (i1s_a Collection)

X[“raw"],

obs .
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annotations (i.e., Cell)
"datasets”
DataFrame l
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Dataset metadata

SOMAMeasurement (i.e., scRNA-seq)
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[
]
o

"summary_cell_counts”

DataFrame |

Cell counts across cell DataFrame
metadata
I Gane maetadala

var

e var: SOMADataFrame w/ variable
annotations (i.e., Gene)

e X: Collection of SOMANdArray

e varm & obsm: derived results (i.e.,
embeddings)

e varp & obsp: pairwise features (i.e.,
SOMA API <> CellXGene Census Discover "featu re_dataset_pregence_matrix)

“feature_dataset_presence_matrix”
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-
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TileDB

Why use TileDB-SOMA?

The key idea of TileDB is that it stores

array elements into collectio

ns called

fragments, which can be either dense or

sparse. Each of these fragme

nts stores data

in data tiles, which are limited by number of

elements for sparse arrays. Ti

eDB

implements an R-tree as an index to
implement sparse array slicing. On array
write, TileDB builds an R-tree index on the
non-empty cells of the sparse array

R-tree indexing and bounding boxes



TDC-2 CellXGene AP
Memory-efficient querying via TileDB-SOMA

from tdc.multi_pred.single_cell import CellXGene
from pandas import DataFrame

dataloader = CellXGene(hame="Tabula Sapiens - ALl Cells")
gen = dataloader.get_data(

value_filter="tissue == 'brain' and sex == 'male

)
df = next(gen)



APIl-first-dataset Architecture

APIl-integrated multimodal data-views
iIntegrating heterogeneous datasources
via the Model-View-Controller design
pattern



HUB -

Dataset curation: 1,645 APl calls. 94 from Torch

Hub (exhaustive), 626 from TensorFlow Hub v2
(exhaustive) and 925 from HuggingFace (Top 20

in each domain).

$

AP| Database

[ APF- torch. hub.loaa] ) j

GORILLA

ﬂ
Self-instruct with in-context This is then used to
examples to generate train Gorilla-7B

16,450 {instruction, API} pairs

API:StableDiffusionPipelin
@.from_pretrained(stabilit
yaifstable-diffusion-2-1}

® —

in celebration!”

wan F#iTask: Generate i
Lhindorhe Information o bent T m
some cots dancing Retriever FFReference APL =
StableDeffusionPipelne. from_ GORILLA
pretrained {...) - F—

Execution

‘ Zero-shot

I Results!

Patil et al. shows that integrating retrieval APIs with LLMs
mitigates the issue of hallucination, commonly
encountered when prompting LLMs directly. They also
discuss the challenges of supporting a web scale collection
of millions of changing APlIs.

Model Stability with Continuous Data Updates

Huiting Liu* Avinesh P.V.S

Moloco Apple
huiting.liu@moloco.com avineshpvs@apple.com

Siddharth Patwardhan Peter Grasch Sachin Agarwal
Apple Apple Apple
patwardhan.s@apple.com pgrasch@apple.comsachin_agarwallapple.com



Fig. 1: Overview and toolset.

From: Augmenting large language models with chemistry tools
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TDC-2 Resource Model

Enhancing contextualization across ML tasks

% HARVARD

Dataverse

FHRRGRESS O Pathways
Anatomical
regions
multimodal healthy-
diseased retrieval API, vast Harvard Dataverse + Querying API for precision
corpus of nearly 50 million external APIs (ncbi, mygene, medicine-oriented

cells across 700 datasets chembl, etc. knowledge graph (PrimeKG)



PrimeKG

Precision Medicine Oriented Knowledge
Graph

PrimeKG integrates 20 high-quality resources to describe 17,080
diseases with 4,050,249 relationships representing ten major biological
scales, including disease-associated protein perturbations, biological
processes and pathways, anatomical and phenotypic scale, and the entire
range of approved and experimental drugs with their therapeutic action.

PrimeKG supports drug-disease prediction by including an abundance of
'indications’, 'contradictions’ and 'off-label use’ edges, which are usually
missing in other knowledge graphs. We accompany PrimeKG's graph
structure with text descriptions of clinical guidelines for drugs and
diseases to enable multi-modal analyses.



PrimeKG

Nodes, relations, example paths

A spectrum of developmental 1;15'5___{Lea+; interacts
disorders that includes autism, T""_:'fr_,.- ‘l_-_'_"""‘"--
and Asperger syndrome. Signs ,nmmhﬂn

and sympltoms include poor

communication skills, defactive

social interactions, and

repetitive behaviors.Each child

with autism spectrum disorder

i5 likely to have a unique

pattarn of behavior [...] Autism

spactrum disorder has no

single known cause. [...]

Autism spectrum disorder

affects children of all races

and naftionalities, but certain

factors increase a child's risk

[.-.] There's no way to prevent

autism spectrum disonder, but

thare ara treatment oplions.

) Exposures

Phenotypes

Anatomical
regions

EPI:

positive and negative associations.

#

Risperidone iz a second-generation
antipsychotic (SGA) medication used
in the treatment of a number of mood
and mental health conditions including
schizophrania and bipolar disorder,
Thea half-life is 3 hours in exlensive
metabolizers. Though s precise
mechanism of action is not fully
understood, current focus is on the
ability of risperidone to inhibit the D2
dopaminergic receptors and 5-HT2A
serotonergic receptors in the brain,
[...] Risperidone and ils active metabo-
lita, B-hydroxyrisperidone, are =88%
and =77% protein-bound in human
plagma, respactively. [...] The primary
action of risperdone is to decrease
dopaminergic and serctonergic
pathway activity in the brain, therefore
decreasing symptoms of schizophna-
nia and mood disorders.

example of paths in PrimeKG between the disease node ‘Autism’ and the
process, CC: cellular component, APZ: Apiprazole, drug node ‘Risperidone’



TDC-2 DSL for multimodality

Contextualizing datasets with resources, for ML-ready multimodal data

VIewWsS

TDC-2's Application-Embedded Domain-
Specific Data Definition Programming
Language. Can be used to, for example,
create a contextualized view of drug-target
interaction datasets using single-cell-
resolution embeddings

class scDTI(ResourceConfig):
"""“Configuration for contextualized drug-target-identification dataset"""

def init (self):
super{scDTI, self). init (
ResourceFeatureGenerator(),

| keys=["df"], # keys in dataloader to update

loader_ functions=["join"], # functions to run over the input parameters
loader args=[{
"ds list": |

"opentargets ibd", "opentargets ra", "Tabula Sapiens - All Cells”,

"pinnacle embeds”

1,

"columns": [["gene_id"], [“gene_id", "cell_id"]1], "method": "inner"

H)



TDC-2 Model-View-Controller

enhanced dataset retrieval with
contextualization for diverse ML tasks

a i
,,,,,,,,,,,,,,,,,,,,, 2 8
—— .{"Q ™ Q
= 'S View
TDC Datasets Manipulate
@ "I'I:T:HD _:'" Hi:f_ peo . .-,.--_-L-L-_-u.--.-' l ALME ] t Eaeag |

TDC-2 Resources
Dataloader

TDC-2 DSL



Model Server and TDC ML
Platform

Embedding retrieval + Training and
iInference on pre-trained therapeutic ML
models




TDC Model Server o

T e |

s ek o TTRER-TI- W

miih nl s e o e s L e, T ion | BN SERn
LD TR T PR

<
o gar e e e e et
e _—
l aane_onlem Filters'yoses e w -
N
1 W Dot S m  yhila el g e
. . e g
: L & 3 F lfa e Sl s Eual o e e e |
4 BBB_Martins-AttentiveFP o w - § = Tn E - — —- - e
¥ Dyind by ocgy  ghewsdry Peopeeieoasran degdoye dogodespiopreed D B kTl | : TE———— - Pap— . e ——
2 B ] 4 g e g grur cal
& bipadsl card Filer o end e g CoirrmeriTy Srrirg: _';f' 3 W " - S —— M——
Py T T— —_— = L
S
I Dataset desniplion
]
A3 e rare wacring oy np Blood ansd brsin sorsee] L 8 0id, the Bledd - Brodn haamier H 2 F
JARRY | Thi pIndecThan e r sask bk manx foisedpn drapn TRie rivs abi by orf 3 oo o pereenne ug gl ng a'ce
e bamie o delwer @ The il of acfion kima @ cruded cialenpe it desslopreent =f deaa ke Fush weighml Huh
Cerviial S b T I IIB mndul
ogs J pu

=008 Byl B

Birery classt catiar. Given a deag SMILLES slring, predict Be sxtivity of IBEH

Datased statisties
Pt 17905 Fowin_wal: 1,590 [l 5% m THEEAPE UTICS
T DATA COMMONS
P reguisines
miall g ol lowing pacasgr l'

@ip dratall PpTE
pip dratwll Qespfupaes
#iF dratall gits hrips f Apd ik, com g - Bed 1y e e D PR RS TODES
gip dratall A terch tECErEision
o can o relerenes The olah refctoah e

— Training Inference
il TN g, 0 s, M stivg Job Endpoint

Ta laad the daisws 'n TOC, byps

Pssst...working with Transformers?

We have your back is lsls

Zrzm Adc.zlnjls_poed imgackt ADHE
daky = ADMG naee = "BEE_Martd 1

Mzdel deacription

dinermrmeFFas g Graph &) s Ay b Dorie sel siu e pepeesenialans besndig aecpbae] Tie
Learm mane —

rreaisd | n e resd ssith B nuee painp e s plaiiermn To asd e pre-oes reed maodel, e
from fde impart EBde_hi_Laksciecw
tdc b ® tde_bd_interfsce]"BEE_Martiig-A5tentivsret)

dp_ o]l = Ui b0 Dioved don ppwapeneal - tddta’l
e _Kl.predicl_fwwppuipasaiip_mxdal, [ YTLF SHALULS STEING' |

Bl idaies

Dintares #aimy on Tharags om ey Dues Tomment, BN C ik TN sl ek ered iado/sd e
Abivk-hiced & hesire-Dd s - ar i e

Mrgine, Inex Filiga, #1 ol "& Rageean appreach o e plicn Blecd -erain hamis ppoeiriian
rcadeling.” Jranrad od chemical i=lormradion ana reecdelrag 5206 [AET] 100G 1697



Listing 7: The below illustrates the basic functionality of the model hub to download a model and
perform inference on a precdictive task as well as fine-tune the model

from tdc import tdc_hf_interface

tdc_hf = tdc_hf_interface("BBB_Martins-AttentiveFP")

# load deeppurpose model from this repo

dp_model = tdc_hf.load_deeppurpose(’./data’)
tdc_hf.predict_deeppurpose(dp_model, [’YOUR,SMILES, STRING’])
# fine-tune

dp_model.train(train, val, test) # for some defined splits

Listing 8: The below illustrates using the tdc model hub to download a foundation model [3]

from tdc import tdc_hf_interface

from transformers import BertModel

geneformer = tdc_hf_interface("Geneformer")
model = geneformer.load()

assert isinstance(model, BertModel), type(model)




Listing 9: Beyond downloading a foundation model 3], the model server facilitates model inference
across a range of datasets. Below an example imtegraung the TDC-2 CellXGene API with the model
SETVET.

from tdc.resource import cellxgene_census
from tdc.model_server.tokenizers.geneformer import GeneformerTokenizer

from tdc import tdc_hf_interface
import torch

# query the CELLXGENE census

adata = self.resource.get_anndata(

var_value_filter=

"feature_id,in,[*ENSGO0000161798* ,,,*ENSGO0000188229°]",
obs_value_filter=

"sex,==y,’female’ and cell_type in,[’microglial, cell’, ’neuron’]",
column_names={

"obs": [
"assay", "cell_type", "tissue", "tissue_general”,
"suspension_type", "disease"
]
},
)

# tokenize gene erpression vectors

tokenizer = GeneformerTokenizer()

% = tokenizer.tokenize_cell_vectors(adata,
ensembl_id="feature_id",
ncounts="n_measured_vars")

cells, _ =x

# load the model
geneformer = tdc_hf_interface("Geneformer")
model = geneformer.load()

#F iF

Custom pre-processing code can include padding and attention mask
~+ definitions.

26

Arar

input_tensor = torch.tensor(cells)
out = []
for batch in input_tensor:
# build an attention mask
attention_mask = torch.tensor(
[[x[0] '= 0, x[1] != 0] for x in batch])
# run batched inference
out . append(model (batch, attention_mask=attention_mask))




Future
Directions

Nov 14th, 2024 | alejandro_velez-arce@hms.harvard.edu




1) Single-cell Al tasks,
benchmarks and evaluators

¥  Formulating Meaningful
~E2, Therapeutics ML Tasks
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- Biomedical Datasets

Developing Powerful
% Machena Learning
Models

|J_l.r Evaluating Realistic
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for single-cell therapeutic tasks

TDC benchmarks provide datasets, dataset splits,
and parformance matrics to evaluate Al methods
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Why would we need single cell therapeutics

slide 1: problem
slide 2 : what has been done
slide 3: gap (we know drugs vary by cell...)

slide 4: goal is to show my research bridging this gap



In the above slide we should emphasize the connections are not there (ie. "crosses OHW ,
AL



