Question

Can we improve neural networks by generalizing its symmetry constraints?

Activation Functions

ReLU: Rectified Linear Units

Characterization

Axis Homogeneity

$$\Lambda(x)_i = \Lambda(x_i)$$
 i.e. $\Lambda \pi_i = \pi_i \Lambda \ \Lambda(x_1, x_2, \ldots) = (\Lambda(x_1), \Lambda(x_2), \ldots)$

+Idempotence

$$\Lambda(\Lambda(x)) = \Lambda(x)$$

$$\Lambda|_{O}(x) = id(x), O$$
 is Borel

• +Positive Homogeneity $\forall t > 0, \Lambda(tx) = t\Lambda(x)$

$$\Lambda(x) := \lambda(x) = \max\{x, 0\}$$

Solution

Allow orthogonal equivariance with a more symmetric invariant set

ReLU: loses the rotary symmetry

CoLU: keeps the rotary symmetry

Previous works: spatial domain (Geometric Deep Learning)

Our work: feature space!

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

• Semidefinite Program

$$\Omega = \mathbb{R}^{C}_{+}$$

$$\min_{y>0} \frac{1}{2} ||x - y||_2$$

Solution

$$\lambda(x) = \pi_{\Omega}(x) = x_{+} = \max\{x, 0\}$$

• Conic Program? $\Omega = \{x: x_1^2 \ge x_2^2 + x_3^2 + \ldots\}$ $\min_{y \in \Omega} \frac{1}{2} ||x - y||_2$

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

CoLU Symmetry is Compatible with Transformer

Nonlinearities Function Group Symmetry Limiting Attention $x \in \mathbb{R}^{C \times N} \mapsto Z^{-1} \exp(\frac{\langle x, x \rangle_C}{\sqrt{C}}) x$ Orth Entropic ColorClusters Perm Simplex Δ^{C-1} Orthant \mathbb{R}^C_+ CoLU $x \in \mathbb{R}^C \mapsto \pi_{\widetilde{V} \cap H(x)}(x)$ Orth Disk D^{C-1} Cone \widetilde{V}

A symmetry constraint on generative models for improved generalization property and better learning and performance.

ReLU: permutation symmetry

- Minimal Example
- Improved Generalization

CoLU: orthogonal/rotary symmetry

Label y

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Closed Form

$$\lambda(x)_{i} = \begin{cases} x_{1}, & i = 1\\ \min \{\max \{x_{1}/(|x_{\perp}| + \varepsilon), 0\}, 1\} x_{i}, & i = 2, \dots, C \end{cases}$$

$$x_{\perp} = (0, x_2, \dots, x_C)$$

Projective Form

$$\lim_{\varepsilon \to 0} \lambda(x) = \pi_{\widetilde{V} \cap H(x)}(x) = \pi_{\max\{x_1, 0\}D + \min\{x_1, 0\}\mathbf{e}_1}(x)$$

Animation: Conic Symmetry

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Multi-Head Structure $\pi_i^G \lambda = \lambda \pi_i^G, i = 1, 2, ..., G$ where C = GS Symmetry Group: $\operatorname{Perm}(G) \times \operatorname{Orth}^G(S-1)$

C = 6, S = 3, G = 2

6 Neurons3D Cone2 Cones

Animation: Conic Symmetry

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Soft Projection

Axis Sharing

5 Neurons3D Cone2 Cones

Glue cone axes w/ $\pi_i^G = \pi_1 \times \pi_{\mathrm{another}(S-1)\mathrm{axes}}$

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Generated Samples of CoLU-LDM

Faster Learning

UNet with Attention (835M parameters)

Diffusion Model and Process Matching

Negative Log Likelihood

$$-\log p(x(0)) \le -\mathbb{E}_{x(t) \sim q(x(t)|x(0))}[\log p(x(t))] + \mathcal{D}_{\mathrm{KL}}\big(q(x(t)|x(0))\big|p(x(0)|x(t))\big)$$

$$\text{Relative Entropy } \mathcal{D}_{\mathrm{KL}}(q|p) := -\int_{x \in M} \log(p(x)/q(x)) \,\mathrm{d}q(x)$$

Approximates x(0)

Conclusion: Match p towards q

Denoise

Diffusion Model and Process Matching

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Better Accuracy and Loss

2-Layer MLP (MNIST, C=512)	ReLU	CoLU
Train Loss	0.0000 ± 0.0000	0.0000 ± 0.0000
Test Accuracy	97.17 ± 00.02	97.23 ± 00.06
2-layer VAE (Shared&Soft)	ReLU	CoLU
Train Loss	84.29 ± 0.34	83.88 ± 2.68
Test Loss	98.14 ± 0.07	97.64 ± 1.39

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

GPT2 MLP (FineWeb10M)	ReLU	CoLU
Forward FLOPs	39.064M	39.101M
Test Loss	3.4569 ± 0.1182	3.3804 ± 0.1159
ResNet-56 (CIFAR10)	ReLU	CoLU
Forward FLOPs	0.252M	0.257M
Test Accuracy	92.7282 ± 0.357	93.5851 ± 0.442
Diffusion Model (CIFAR10)	ReLU	CoLU (Faster)
Train Loss	0.1653	0.1458
Early Samples		

Diffusion Model Training

O(C) Complexity

Negligible Overhead vs ReLU

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

ReLU: matches each other with swapping

Palettes

Last Convolution Layer of Diffusion Model with Different Seeds

CoLU: with swapped color rotation

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Implication: Generalize NN Symmetry

Previous works: Linear Mode Connectivity

- Optimization: Non-convex loss is convexified by the quotient.
- Geometry: Neural network symmetry induced by activation.
- Probability: Optimal mixture irrelevant of initializations.

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Linear Mode Connectivity: Generative Models

Outputs of CNN with interpolated parameters

Image Histogram

A symmetry constraint on generative models for improved **generalization property** and better **learning and performance**.

Linear Mode Connectivity: Generative Models

Animation: interpolation between parameters in a finetuned diffusion model

Conclusion

CoLU is a symmetry constraint on generative models for improved generalization property and better learning and performance.