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1. Motivation

» The adjoint method Is effective in optimizing photonic structures by calculating the physical gradient of the entire
structure with only two simulations.

= Despite its usefulness, the method often encounters limitations, including susceptibility to local optima and a
complicated binarization process.

» Deep-learning-based approaches such as GANs formulate inverse design problems as image generation task to
solve the issue but require a large number of simulations.

= By combining diffusion models with adjoint sensitivity analysis, we demonstrate that stochastic optimization with a
simple process can solve an inverse problem using a minimal number of simulations.

2. Methods
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« We utilize Denoising Diffusion Probabilistic Models (DDPM). « Adjoint sensitivity analysis enables the calculation of adjoint
1) Forward process: addition of noise gradient for each material pixel with only two simulations.
2) Reverse process: denoising process / image generation - Adjoint gradient indicates how the material value must

\ « We apply physical gradient (adjoint gradient) to the reverse procesy \ change to enhance the Figure of Merit (FoM). /
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« The gradient value is directly added with the conditions of structure and the corresponding step number.
\- The overall number of simulations required is determined solely by the number of reverse steps needed. /

3. Results & Analysis
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Problem Setup: Free-form Bending Waveguide
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