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INTRODUCTION: REPRESENTATION LEARNING

• Representation Learning in Supervised Learning
• Learn a representation of relevant features and parameters characterizing corruption from “noise”
• Example: Learn a function that maps every “3” to the same value but maps “4” to another value
• Do neural representations filter out noise and preserve uncorrupted signal at DNN representation layer?

• Why is this important?
• Transfer Learning with a few samples (representation can generalize across variations)
• Improve robustness (separating representation and noise reduces sensitivity to noise)

Dikkala, N., Kaplun, G. and Panigrahy, R., 2021. For manifold learning, deep neural networks can be locality sensitive hash functions. arXiv preprint arXiv:2103.06875.
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INTRODUCTION: MANIFOLD LEARNING

• Each Label is a Manifold in High-dimensional Space
• Input 𝒙 ∈ ℝ! drawn from a set of manifolds with a shared geometry
• Shared Geometry

• 𝑓 is an (unknown) vector-valued, bounded-norm, analytic function that maps latents 𝜸, 𝜽 to input 
𝒙 = 𝑓(𝜸, 𝜽)

• Label is a function 𝑔 that maps 𝜸 (only) to manifold identity 𝑦 = 𝑔 𝜸
• Supervised Learning Task 

• Given: 𝑚 manifolds (𝜸", … , 𝜸#) and 𝑛 samples from each (𝑚 is the number of classes)
• Supervised learning of 𝑔 0 : Learn to map an input 𝒙 to the manifold 𝜸 it came from
 

• Geometric Sensitive Hashing (GSH)
• Representations of same class cluster together (𝜽 independence)
• Representations of different classes are well separated (𝜸 sensitivity)

Dikkala, N., Kaplun, G. and Panigrahy, R., 2021. For manifold learning, deep neural networks can be locality sensitive hash functions. arXiv preprint arXiv:2103.06875.
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INTRODUCTION: GEOMETRIC SENSITIVE HASHING

• Model Architecture for Geometric Sensitive Hashing (GSH)
• A single-hidden-layer architecture is sufficient for a GSH:

• 𝑦 = 𝐴 0 𝐵 0 𝜎(𝐶𝒙)
• 𝐶 ∈ ℝ$×! is non-trainable, randomly weighted matrix (𝐷 ≫ 𝑑)
• 𝜎: ReLU activation function
• 𝐴 ∈ ℝ#×&, 𝐵 ∈ ℝ&×$ are trainable matrices (𝑚 is the number of classes)

• 𝐴, 𝐵 are linear layers with no non-linearity between them
• 𝑦 ∈ ℝ# (one-hot encoding label)

• Loss function and regularization: Square loss and L2 norm on 𝐴, 𝐵
• ℒ 𝐴, 𝐵 = 𝔼' 𝐴 0 𝐵 0 𝜎 𝐶𝒙 − 𝑦()*+ ,

- + 𝜆" 𝐴 ,
- + 𝜆- 𝐵 ,

-

• Main results: DNN can provably exhibit GSH on manifold data

How that GSH can be extended to understand the manifold 
geometries in a series of supervised learning tasks?

Will manifold comparisons reflect task similarities? 
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Dikkala, N., Kaplun, G. and Panigrahy, R., 2021. For manifold learning, deep neural networks can be locality sensitive hash functions. arXiv preprint arXiv:2103.06875.
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PROBLEM DEFINITION: REPRESENTATION LEARNING ACROSS MULTIPLE RELATED TASKS

• Supervised Continual Learning
• 𝒯 tasks arrive to a learner in sequential order
• 𝒟. = {𝒙/,., 𝑦/,.}.

'!  is the dataset of task 𝑡, composed of 𝑛. pairs of input and labels 
•  For simplicity, 𝒞 is the number of classes for every task

• Representation Learning in Supervised Continual Learning
• Goal: A function that is constant among digits with the same rotated angle but sensitive to the rotation 

angle of digits
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𝜸": fundamental features of the task 𝑡
𝜽!: spurious features or noise of the task 𝑡
𝜹: shared features for classes

5



PROBLEM DEFINITION: GEOMETRIC SENSITIVE HASHING ACROSS MULTIPLE RELATED TASKS

• Each Task is a Manifold in High-dimensional Space
• 𝒯 tasks arrive to a learner in sequential order
• 𝒟. = {𝒙/,., 𝑦/,.}.

'"  is the dataset of task 𝑡, composed of 𝑛. pairs of input and labels

• Each input 𝒙/,. ∈ ℝ! drawn from a set of manifolds with a task-specific shared geometry

• Task-specific Shared Geometry
• 𝑓 is an (unknown) vector-valued bounded norm analytic function that maps latents 𝜸., 𝜹, 𝜽.	to input 
𝒙. = 𝐟(𝜸., 𝜹, 𝜽.)

• Label is a function of 𝜸., 𝜹: 𝑦. = 𝑔 𝜸., 𝜹

• A Set of Supervised Learning Tasks
• Given 𝒯 manifolds (𝜸", … , 𝜸𝒯) and 𝑛. samples from each task 𝑡, learn to map an input of the task 
𝑡	to the task-specific manifold it came from

• Finding 𝑔 0  is the training process in continual learning setup
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TASK-SPECIFIC GEOMETRIC SENSITIVE HASHING (T-GSH)

• Regardless of the associated labels:
• Representations of any data points on the same task cluster together
• Representations of any data points on the different tasks are well separated

𝑟
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T-GSH CONFIGURATION

• Model Architecture for Task-specific Geometric Sensitive Hashing (T-GSH)
• Model for conventional GSH: 𝑦 = 𝐴 0 𝐵 0 𝜎(𝐶𝒙)
• Model for a T-GSH for task 𝑡: 𝑦. = 𝐑 0 𝐵. 0 𝜎(𝐶𝒙.)

• 𝜎: ReLU activation function
• 𝐶 ∈ ℝ$×! is non-trainable, randomly weighted matrix (𝐷 ≫ 𝑑)
• 𝐑 ∈ ℝ𝒞×& is also non-trainable, randomly weighted matrix, representing 𝜹
• 𝐵. ∈ ℝ&×$ is a trainable matrix for the task 𝑡
• 𝐑, 𝐵 are linear layers with no non-linearity between them

• Can leverage the Loss function and regularization of the model for GSH

𝒙𝒕
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EXAMPLE T-GSH: CONFIRUABLE RANDOM WEIGHTED NETWORKS (CRWN)

• Configurable Random Weighted Networks (CRWNs)
• Simple yet efficient neuromodulation-inspired DNNs for continual learning
• 𝑦* = 𝛼* + 𝐑 + 𝑣*⨀𝜎 𝐶𝒙* = 𝐑 + ((𝛼* + 𝑣*)⨀(𝜎 𝐶𝒙* ))

• 𝛼* ∈ ℝ is a learnable constant acting as global neuromodulation
• 𝑣* ∈ ℝ+ is a learnable vector mimicking local neuromodulation

𝑦. = 𝐑 0 𝛼. 0 𝑣. ⨀ 𝜎 𝐶𝒙. 	 = 𝐑 0 𝐵. 0 𝜎(𝐶𝒙.)

𝐵*

Hong, J. and Pavlic, T.P., 2022. Learning to modulate random weights: neuromodulation-inspired neural networks for efficient continual learning. arXiv preprint arXiv:2204.04297. 9
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EXPERIMENT 1-1: CRWN IS A GSH and T-GSH FUNCTION

Hong, J. and Pavlic, T.P., 2022. Learning to modulate random weights: neuromodulation-inspired neural networks for efficient continual learning. arXiv preprint arXiv:2204.04297.

• RotationMNIST
• A total 36 tasks exist and each of which corresponds to 

images counterclockwise rotated by a multiple of 10 degrees

T1 (0°) …
…
… T19 (180°)

T10 (90°)
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1) CRWN is a GSH Function

CRWNs achieved ~95% test accuracy average over 
all 36 tasks. 

(FlyNet: 94.9% and NeuroModNet: 95.5%)

CRWNs

2) CRWN is a T-GSH Function



EXPERIMENT 1-2: APPROXIMATING/RECONSTRUCTING DATA FROM LATENT REPRESENTATION

• Task-specific Shared Geometry
• 𝑓 is an (unknown) vector-valued bounded norm analytic function that maps latents 𝜸., 𝜹, 𝜽.	to input 𝒙. =
𝐟(𝜸., 𝜹, 𝜽.)

• Can reconstruct data on the desired task manifold!
• Finding 𝑦. = 𝑔 𝜸., 𝜹  is the training process in continual learning setup
• Because of using ReLU, inverse of the trained CRWNs can reconstruct an approximation of data

(Top Row) Reconstructed samples of digit “3”. (Bottom Row) 
Reconstructed samples of digit “1”. (Left Column) Reconstructed 
samples of digits from the task manifold T1, which is 0°rotation. 
(Middle Column) the samples of digits from the task manifold 
T5, which is 40 °counterclockwise rotation. (Right Column) the 
samples of digits from the task manifold T10, which is 90 
°counterclockwise rotation.
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EXPERIMENT 2-1: MEASURING REPRESENTATIONAL SIMILARITIES ON ROTATIONMNIST TASKS

• Configurable Random Weighted Networks (CRWNs)
• 𝑦. = 𝐑 0 ((𝛼. 0 𝑣.)⨀𝜎 𝐶𝒙. )

• 𝛼. ∈ ℝ is a learnable constant acting as global neuromodulation
• 𝑣. ∈ ℝ$ is a learnable vector mimicking local neuromodulation

• 𝑦. = 𝐑 0 (𝑐.⨀𝜎 𝐶𝒙. )
• 𝑐. ≜ 𝛼. 0 𝑣. is called a context vector

• The learned task manifolds can represent the relationships between the tasks!

Context-vector comparison across 36 tasks

A confusion matrix of intra (same task 
manifold) VS inter (different task manifolds) 

cosine similarity of task representations 
trained on RotationMNIST. Cosine similarity 
between task context vectors before (left) 

and after training (right). 

C
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EXPERIMENT 2-2: MEASURING REPRESENTATIONAL SIMILARITIES ON AUGMENTMNIST TASKS

• AugmentMNIST
• A sequence of 8 off-the-shelf, commonly used data-augmentation tasks
• After training on each of the 8 tasks, use hierarchical agglomerative clustering to sort the task context 

vectors so that adjacent tasks tend to have highest similarity
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Representational differences reflect fundamental relationships between tasks

Inferred task phylogenyCosine similarities



SUMMARY & FUTURE RESEARCH DIRECTIONS

• Key Results:
• Proposed T-GSH, an extension of GSH, to understand the manifold 

geometries in a series of supervised learning tasks
 

• Used T-GSH to connect neuromodulation-inspired neural networks for 
continual learning and task-specific geometric manifold learning
• Closing a gap between representational learning and neuroscience

 

• Demonstrated that each of the learned task manifolds can represent 
(possibly unappreciated) relationships between the tasks based on them

• Future Research Directions
• Enhance theoretical support for learning in various continual-learning 

setups, such as class-incremental and domain-incremental learning
14
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