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Magnetic Anomaly Navigation (MagNav) Dataset & Setup
» MagNav is a proven, viable fallback to GPS[12] Dataset: United States Air Force-MIT Signal .
Enhancement for Magnetic Navigation Mogd S Mag3
« Airborne MagNav estimates positioning by correlating aircraft Challenge Dataset [open-source]! Tail Stinger \ |
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« Airborne MagNav is highly resistant to: compensation) to derive a clean signal Flux G, D y
for MagNav. N

* jamming/spoofing attacks
* atmospheric weather conditions

e Stochastic and deterministic effects
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classical calibration attempts!3., Results

 LTC demonstrates ~58% deduction in compensation error [RMSE].

e LTC-CfC shows ~64% reduction compensation error vs. classical model.
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Fig 5. Truth vs. predicted signal [nT] for flight 1007

Closed-Form Continuous Liquid Time-Constant Networks (LTC-CfC)

* LTCs, atype of RNN, use ODE-solvers for high-dim, sequential tasks.
* LTCs uncover nonlinear dynamics using neural circuit policies!* to
solve the system:

fl_’t‘ — w, + F(x,10)x(0) + Af (%, 1 6)

Conclusion & Broader Impact

Novel, physics-informed model that models higher-order, nonlinear
dynamics in aeromagnetic compensation.

Offers magnetic effects corrections, LTCs with ODE-solvers/closed-

« A CfC delivers higher efficiency and achieves faster, adaptive, causal, & form & additive compensation correction for MagNav signals.

continuous-time solutions without an ODE-solver’/,
Separates weak magnetic anomaly fields from noisy magnetic
interference for accurate positional estimation in airborne MagNav.
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