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NLP systems are black boxes

2

Text Output

Problem: Black box systems are difficult to audit, debug, and trust 
• Audit for potentially unsafe behavior 
• Predict and debug failure cases 
• Trust that the model does what we want

If we want to rely on this technology, we need to have a better 
understanding of how NLP models make decisions



How can we understand NLP systems?
• Prior work: Post-hoc interpretability 
• Probing, feature importance, instance attribution 

• Partial insight, but not complete/faithful descriptions of how the model makes decisions 
• Growing body of work on mechanistic interpretability 

• Manual effort; still prone to “interpretability illusions”
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Our approach: Instead of trying to explain black-box models, modify 
Transformers to be mechanistically interpretable by design 
Method: Optimize a model to solve a task, and automatically decompile it 
into a human-readable program
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Weiss et al., 2021. Thinking like Transformers. 
Lindner et al., 2023. Tracr: Compiled Transformers as a Laboratory for Interpretability.

Approach: Transformers as programs
• RASP: A programming language for the Transformer

Transformer

Compiler u

Human-written program

opp = length - indices - 1
flip = select(indices, opp, ==)
reverse = aggregate(flip, tokens)

This work: Can we train a (modified) Transformer and then automatically 
decompile it into a human-readable program?

Human-readable program(Modified) Transformer

Decompileru

var0 = length - indices - 1
attn = select(indices, var0, ==)
output = aggregate(attn, tokens)



Method: Learning Transformer Programs

1. Define constraints on the network to ensure there is a mapping to a 
discrete, rule-based program, and train a continuous relaxation 

2. Discretize the weights 
3. Decompile the discrete model into a Python program
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Overview: Constraints
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Constraint 1: Disentangled residual stream Constraint 2: Interpretable sublayers



Illustration: Simple in-context learning
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Transformer Program 
• Two layers 
• One attention head per-layer 
• Vocab size = 10 
• Sequence length = 10

Brown et al., 2020. Language Models Are Few-shot Learners. 
Elhage et al., 2021. A Mathematical Framework for Tranformer Circuits.



Constraint 1: Disentangled residual stream
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Input embeddings encode 
two categorical variables 
(tokens and position)



Constraint 1: Disentangled residual stream
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Input embeddings encode 
two categorical variables 
(tokens and position)

Each attention layer reads 
a fixed set of variables Given two input variables, learn:

Reading from the residual stream

<latexit sha1_base64="+VqkSRZ1Uy4Uu+wVP3FGWtWU028="></latexit>

⇡ 2 {0, 1}2 : ⇡1 + ⇡2 = 1

W = [⇡1I;⇡2I]
>

<latexit sha1_base64="+VqkSRZ1Uy4Uu+wVP3FGWtWU028=">AAACXnicbZFfSxwxFMUzU2vtWHVtXwp9ubgogrLMLFZLRZD2pb4puK6wGZdMNqPBTDIkGWEJ8yV9K774UczszoP/LoQcfudekpxkpeDGxvH/IPyw8HHx09LnaPnLyupaZ/3rhVGVpmxAlVD6MiOGCS7ZwHIr2GWpGSkywYbZ7d/GH94xbbiS53ZasrQg15LnnBLr0bhTbeFMiYmZFn5zuOQ1YC4Bu3gXElxf9eE3eDp2SQ07c9Wv4QgSwDjawgWxN1nuhg0aNa7nLTupD2f9/WckvXLYqrIed7pxL54VvBVJK7qordNx5x5PFK0KJi0VxJhREpc2dURbTgWrI1wZVhJ6S67ZyEtJCmZSN4unhk1PJpAr7Ze0MKPPJxwpTBOA72xual57DXzPG1U2/5U6LsvKMknnB+WVAKugyRomXDNqxdQLQjX3dwV6QzSh1v9I5ENIXj/5rbjo95L93s+zve7xnzaOJfQDbaBtlKADdIz+oVM0QBQ9BEEQBcvBY7gYroRr89YwaGe+oRcVfn8CLOKyRQ==</latexit>

⇡ 2 {0, 1}2 : ⇡1 + ⇡2 = 1

W = [⇡1I;⇡2I]
>



Constraint 2: Interpretable sublayers
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Each attention layer reads 
a fixed set of variables

… applies a learned, rule-
based transformation

Note: One-hot attention 
- Attend to closest matching token 
- Attend to BOS if there’s no match

(rows sum to one)

Given input variables with cardinality 10, learn:
<latexit sha1_base64="p6HcdjoPaZK5opPn8GNu1rNsHbg=">AAACInicbVDLSgMxFM34tr6qLt0Ei+BCyoz43BXduFSwVujUkknvaDCTGZI7YgnzLW78FTcuFHUl+DFmahe+DgQO59zLzTlRJoVB33/3RkbHxicmp6YrM7Nz8wvVxaUzk+aaQ5OnMtXnETMghYImCpRwnmlgSSShFV0fln7rBrQRqTrFfgadhF0qEQvO0End6n6YMLyKYtsqujZEuEXr9nulD0VBQ6FoaP0NGoTFhQ18GqJIwNDAL7rVml/3B6B/STAkNTLEcbf6GvZSniegkEtmTDvwM+xYplFwCUUlzA1kjF+zS2g7qpg71LGDiAVdc0qPxql2TyEdqN83LEuM6SeRmywDmd9eKf7ntXOM9zpWqCxHUPzrUJxLiikt+6I9oYGj7DvCuBbur5RfMc04ulYrroTgd+S/5GyzHuzUt0+2ao2DYR1TZIWsknUSkF3SIEfkmDQJJ3fkgTyRZ+/ee/RevLev0RFvuLNMfsD7+ATroKPT</latexit>

Wpredicate 2 {0, 1}10⇥10

Input embeddings encode 
two categorical variables 
(tokens and position)



Constraint 2: Interpretable sublayers
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Read positions as the key 
and query variable

Predicate: Each position attends 
to the previous position

Read tokens as the value

Summary: At each position, copy the identity 
of the token at the previous position



Constraint 2: Interpretable sublayers
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Each attention layer reads 
a fixed set of variables

… applies a learned, rule-
based transformation

… and writes a new variable 
to a dedicated address

Input embeddings encode 
two categorical variables 
(tokens and position)

Summary: “induction head” mechanism



Linear classifier
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Each attention layer reads 
a fixed set of variables…

… applies a learned, rule-
based transformation

… and writes a new variable 
to a dedicated address

Input embeddings encode 
two categorical variables 
(tokens and position)

Discrete feature extractor Continuous feature classifier



Method: Learning Transformer Programs
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Constraint 1: Disentangled residual stream

Extensions: Other program modules 
- Attention with numerical values 
- Feed-forward layers 
- Categorical word embeddings 

(See paper for details)

Constraint 2: Interpretable sublayers



Optimization
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Discrete weights

• Define a distribution over discrete program weights 
• Optimize using Gumbel reparameterization

<latexit sha1_base64="p6HcdjoPaZK5opPn8GNu1rNsHbg=">AAACInicbVDLSgMxFM34tr6qLt0Ei+BCyoz43BXduFSwVujUkknvaDCTGZI7YgnzLW78FTcuFHUl+DFmahe+DgQO59zLzTlRJoVB33/3RkbHxicmp6YrM7Nz8wvVxaUzk+aaQ5OnMtXnETMghYImCpRwnmlgSSShFV0fln7rBrQRqTrFfgadhF0qEQvO0End6n6YMLyKYtsqujZEuEXr9nulD0VBQ6FoaP0NGoTFhQ18GqJIwNDAL7rVml/3B6B/STAkNTLEcbf6GvZSniegkEtmTDvwM+xYplFwCUUlzA1kjF+zS2g7qpg71LGDiAVdc0qPxql2TyEdqN83LEuM6SeRmywDmd9eKf7ntXOM9zpWqCxHUPzrUJxLiikt+6I9oYGj7DvCuBbur5RfMc04ulYrroTgd+S/5GyzHuzUt0+2ao2DYR1TZIWsknUSkF3SIEfkmDQJJ3fkgTyRZ+/ee/RevLev0RFvuLNMfsD7+ATroKPT</latexit>

Wpredicate 2 {0, 1}10⇥10

<latexit sha1_base64="YvZm7afGmO2qlgExvEMCsuGwk64=">AAACV3icjVHLTgIxFO0MqIgv0KWbRqJxYcgM8bUkujFxA4k8EjpOOqVAQ6czaTsmZDI/adzwK260wCwUXHiSpifnnpt7exrEnCntOHPLLhS3tndKu+W9/YPDo0r1uKuiRBLaIRGPZD/AinImaEczzWk/lhSHAae9YPq4qPfeqFQsEi96FlMvxGPBRoxgbSS/Ii5QEPGhmoXmSlHMMr8LERMQpc4VdFH22oAIlTdd7X+5ntdcfqXm1J0l4CZxc1IDOVp+5R0NI5KEVGjCsVID14m1l2KpGeE0K6NE0RiTKR7TgaECh1R56TKXDJ4bZQhHkTRHaLhUf3akOFSLbY0zxHqi1msL8a/aINGjey9lIk40FWQ1aJRwqCO4CBkOmaRE85khmEhmdoVkgiUm2nxF2YTgrj95k3Qbdfe2ftO+rjUf8jhK4BScgUvggjvQBE+gBTqAgA/waRWsojW3vuxtu7Sy2lbecwJ+wa5+A0Ensas=</latexit>

⇡V 2 {0, 1}2

⇡Q 2 {0, 1}2

⇡K 2 {0, 1}2

Continuous parameters

<latexit sha1_base64="SxA5Gi7EfDZXDqnOBcZXG212KlE="></latexit>

Wpredicate,i ⇠ One-hot(Categorical( i))

<latexit sha1_base64="xNmfQc5ZyrGkaPw2SRz7CAq8vV0="></latexit>

⇡K ⇠ One-hot(Categorical(�K))

<latexit sha1_base64="9nd3e3XYVYUx/DxZszd7ipDGLUg="></latexit>

⇡V ,⇡Q,⇡K 2 {0, 1}2

�V ,�Q,�K 2 R2

<latexit sha1_base64="wh79he1hJuNh3Ve4VejU3ds75Nw="></latexit>

 1, . . . , 10 2 R10

Jang et al., 2017. Categorical Reparameterization with Gumbel-Softmax.



Experiments: Can we learn effective programs?
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Algorithmic tasks

0

25
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100

Reverse Hist 2-Hist Sort Most Freq

Standard Transformer Transformer Program

NLP tasks

0
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75

100

NER Trec MR Subj AG

• In the paper: More analysis of where Transformer Programs struggle
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Are the programs interpretable?
• We can interpret the solutions by reading the code 
• Example: Recognizing balanced parenthesis languages

1. Copy the previous token 2. Check for invalid bigrams 3. Propagate the result to later positions
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Are the programs interpretable?
• Computer code can still be difficult to understand… 
• But we can use off-the-shelf tools for code analysis

Set breakpoints

Inspect intermediate 
variables

Leave comments



19

Full programs are on GitHub:

13

Programs and codeLink to the paper github.com/princeton-nlp/
TransformerPrograms 

https://github.com/princeton-nlp/TransformerPrograms
https://github.com/princeton-nlp/TransformerPrograms


Summary
• Learn Transformers that are mechanistically interpretable by design 
• This method can learn non-trivial programs (for small-scale tasks) 
• The programs are easy to interpret, e.g. using standard code analysis tools 
• Directions for future work 

• Addressing discrete optimization challenges 
• Introducing more expressive modules 
• Tools for automatic program analysis 

• See our paper for more examples, analysis, and discussion
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Paper: https://arxiv.org/abs/2306.01128 
Code: https://github.com/princeton-nlp/TransformerPrograms 
Contact: dfriedman@princeton.edu

13

Programs and codeLink to the paper

https://arxiv.org/abs/2306.01128
https://github.com/princeton-nlp/TransformerPrograms
mailto:dfriedman@princeton.edu


Extra slides
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Scaling Transformer programs

• Future work needed for: 
• Better optimization methods 
• Making the programs more expressive

22

• What are the obstacles to scaling this approach?



23

tok pos attn mlp

0
1

2
L
ay

er

0.21 0.79 0.00 0.00

0.04 0.54 0.12 0.29

0.04 0.58 0.17 0.21

Cat. head: query
tok pos attn mlp

0.17 0.83 0.00 0.00

0.04 0.83 0.12 0.00

0.29 0.54 0.08 0.08

Cat. head: key
tok pos attn mlp

0.83 0.17 0.00 0.00

0.42 0.00 0.38 0.21

0.25 0.00 0.58 0.17

Cat. head: value
tok pos attn mlp

0.38 0.62 0.00 0.00

0.00 0.17 0.38 0.46

0.04 0.12 0.58 0.25

Num. head: query
tok pos attn mlp

0.62 0.38 0.00 0.00

0.38 0.25 0.12 0.25

0.29 0.00 0.12 0.58

Num. head: key
ones attn

1.00 0.00

0.17 0.83

0.21 0.79

Num. head: value

0.00

0.25

0.50

0.75

1.00

Figure 12: For each of the RASP tasks, we learn a Transformer Program with three layers and eight
heads per-layer, divided evenly between categorical and numerical attention heads, and summarize
the types of variables that are read at different layers. For each layer, we list the key, query, and value
variables read by attention heads at that layer, and calculate the proportion of heads that read the
tokens variable; positions; ones (for numerical attention); the output of a previous attention head
(attn); or the output of a previous MLP (mlp). We aggregate over RASP programs and compare
categorical attention heads (left) and numerical attention heads (right).

Attention 1 MLP 1 Attention 2
Read Predicate Read Read Predicate Accuracy

- - - - - 23.2/23.6/24.1
4 4 4 4 4 99.9/99.9/80.8
4 4 4 4 - 37.9/40.3/18.5
4 4 4 - 4 17.1/13.7/20.2
4 4 - 4 4 95.1/94.1/95.3
4 - 4 4 4 99.1/83.9/78.2
- 4 4 4 4 35.5/44.1/41.8

Table 5: Results on the Reverse task (|V| = N = 16) after manually initializing model components to
encode a generalizing solution. (See Section C.3.) In each row, we choose a subset of components to
manually initialize (4), initialize the other weights randomly (-), and then train the model, reporting
the (per-token) accuracy of the resulting program. The components we consider are the projection
matrices, which determine which variables each module reads (Read), and the attention predicate
matrices (Predicate). All other components (i.e., the internal MLP parameters and the final classifier
weights) are always initialized randomly. We run each experiment with three random seeds and
report the accuracy from each run. When we manually initialize the attention Read and Predicate

weights to encode the generalizing solution, the model successfully learns the remaining components.
Performance degrades considerably when even a single attention components is initialized randomly,
suggesting that our optimization procedure struggles to find effective attention patterns.

# Second-layer attention
output = aggregate(select(targets, positions, ==), tokens)

The first attention layer copies the position of the end-of-sequence token to determine the length of
the sequence; the first-layer MLP calculates the difference between length and positions; and
the second attention layer uses the MLP output to read, at each position i, the token at position
length� i. This solution works for sequences of all lengths, but Transformer Programs evidently
fail to learn it.

Method To better understand why, we manually initialize some components of a two-layer Trans-
former Program model to encode this solution and train the model on the Reverse task with a
vocabulary size and maximum sequence length of 16. Specifically, in the attention layers, we manu-
ally initialize: (1) the parameters associated with ⇡K , ⇡Q, and ⇡V , which identify the key, query, and
value variables to read; and (2) the parameters associated with the predicate matrix Wpredicate. In the
MLP, we manually initialize the parameters associated with the input projection matrix Win, which
determines which variables the MLP reads from the residual stream. We do not initialize the other
MLP weights or the classifier weights. We initialize different subsets of these parameters and observe
whether the model learns the remaining components needed to complete the solution. We train each
model for 100 epochs but otherwise use the same hyperparameters described in Appendix B.
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Figure 11: After converting a Transformer Program into Python code, we can analyze it using off-
the-shelf debugging tools. Here, we inspect a subset of the Sort program using the built-in debugger
in Visual Studio Code. We can step through the program for a test example, set break-points, and
leave comments. In this example, we find a circuit involving two attention heads, with a second-layer
attention head (left) reading a value from a first-layer attention head (right). Inspecting the code,
we can see that this pair of heads has the effect of propagating an early-position token to the later
positions and a late-position token to the earlier positions.

Dataset Full Pruned
Reverse 1893 713
Hist 324 160
2-Hist 1309 423
Sort 1503 635
Most Freq 1880 666
Dyck-1 9975 892
Dyck-2 5406 733

Table 4: The number of lines in best programs for each RASP task before and after applying a set of
simple pruning strategies based on static analysis of the code.

What information do the attention heads read? Because each attention head reads a fixed set of
named variables, we can characterize how information flows through the programs by examining
which variables are read by each head. In Figure 12, we summarize this information for RASP
programs. At the first layer, the majority of categorical attention heads read positions as key and
query variables and tokens as the value. At higher layers, positions remains the most common
key variable, but the models are more likely to read the outputs of lower-layer attention heads as
the value variable. Numerical attention heads are less likely to read positions and more likely to
read tokens, attn, and mlp outputs. Both kinds of attention successfully learn to compose modules,
with higher-layer modules reading the outputs of modules at lower layers.

C.3 Optimization challenges: case study

What are the challenges to scaling Transformer Programs to more complex problems? As discussed
in Section 6, some of the main obstacles are optimization challenges. This is evident from the fact
that, for many RASP tasks, we can write a Transformer Program that would achieve perfect accuracy,
but our method fails to learn these solutions (as illustrated in Fig. 10). In this section, we conduct a
case study to better understand these optimization challenges.

Setting We focus on the Reverse task. This task can be solved by the following program, adapted
from Weiss et al. [2021], using a Transformer with two layers and one attention head per-layer:

# First-layer attention
length = aggregate(select(tokens, tokens, lambda q, k: k == "</s>"), positions)

# First-layer MLP
targets = one_hot(length - positions)
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Figure 12: For each of the RASP tasks, we learn a Transformer Program with three layers and eight
heads per-layer, divided evenly between categorical and numerical attention heads, and summarize
the types of variables that are read at different layers. For each layer, we list the key, query, and value
variables read by attention heads at that layer, and calculate the proportion of heads that read the
tokens variable; positions; ones (for numerical attention); the output of a previous attention head
(attn); or the output of a previous MLP (mlp). We aggregate over RASP programs and compare
categorical attention heads (left) and numerical attention heads (right).

Attention 1 MLP 1 Attention 2
Read Predicate Read Read Predicate Accuracy

- - - - - 23.2/23.6/24.1
4 4 4 4 4 99.9/99.9/80.8
4 4 4 4 - 37.9/40.3/18.5
4 4 4 - 4 17.1/13.7/20.2
4 4 - 4 4 95.1/94.1/95.3
4 - 4 4 4 99.1/83.9/78.2
- 4 4 4 4 35.5/44.1/41.8

Table 5: Results on the Reverse task (|V| = N = 16) after manually initializing model components to
encode a generalizing solution. (See Section C.3.) In each row, we choose a subset of components to
manually initialize (4), initialize the other weights randomly (-), and then train the model, reporting
the (per-token) accuracy of the resulting program. The components we consider are the projection
matrices, which determine which variables each module reads (Read), and the attention predicate
matrices (Predicate). All other components (i.e., the internal MLP parameters and the final classifier
weights) are always initialized randomly. We run each experiment with three random seeds and
report the accuracy from each run. When we manually initialize the attention Read and Predicate

weights to encode the generalizing solution, the model successfully learns the remaining components.
Performance degrades considerably when even a single attention components is initialized randomly,
suggesting that our optimization procedure struggles to find effective attention patterns.

# Second-layer attention
output = aggregate(select(targets, positions, ==), tokens)

The first attention layer copies the position of the end-of-sequence token to determine the length of
the sequence; the first-layer MLP calculates the difference between length and positions; and
the second attention layer uses the MLP output to read, at each position i, the token at position
length� i. This solution works for sequences of all lengths, but Transformer Programs evidently
fail to learn it.

Method To better understand why, we manually initialize some components of a two-layer Trans-
former Program model to encode this solution and train the model on the Reverse task with a
vocabulary size and maximum sequence length of 16. Specifically, in the attention layers, we manu-
ally initialize: (1) the parameters associated with ⇡K , ⇡Q, and ⇡V , which identify the key, query, and
value variables to read; and (2) the parameters associated with the predicate matrix Wpredicate. In the
MLP, we manually initialize the parameters associated with the input projection matrix Win, which
determines which variables the MLP reads from the residual stream. We do not initialize the other
MLP weights or the classifier weights. We initialize different subsets of these parameters and observe
whether the model learns the remaining components needed to complete the solution. We train each
model for 100 epochs but otherwise use the same hyperparameters described in Appendix B.
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Results on the Reverse task (vocab size = length = 16) after initializing the model to encode a 
generalizing solution (below). Each component is initialized either manually (✔) or randomly (-).

Optimization challenges: case study
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(a) Feature weights.

# attn_0_3: Copy var3 from previous token

def predicate_0_3(q_position, k_position):

if q_position in {2}:

return k_position == 1

if q_position in {3}:

return k_position == 2

if q_position in {4}:

return k_position == 3

if q_position in {5}:

return k_position == 4

if q_position in {6}:

return k_position == 5

# ...

attn_0_3_pattern = select_closest(positions, positions, predicate_0_3)

attn_0_3_outputs = aggregate(attn_0_3_pattern, var3_embeddings)

(b) Code for the attention features.
class Var3(Enum):

V00 = ['German', 'television', 'Foreign', 'newspaper', ...]

V01 = ['<unk>', 'Johnson', 'Morris', 'Service', ...]

V02 = ['<s>', '</s>', 'Bank', 'York', 'Commission', ...]

V03 = ['at', 'AT', 'In', 'Saturday', 'match', 'At', ...]

V04 = ['/', 'up', 'no', 'newsroom', 'Attendance', ...]

V05 = ['during', 'leader', 'quoted', 'manager', 'came', ...]

V06 = ['Akram', 'TORONTO', 'BALTIMORE', 'BOSTON', ...]

V07 = ['said', "'s", 'has', '@th', 'other', 'shares', ...]

V08 = ['second', 'told', 'b', 'did', 'spokesman', ...]

V09 = ['Australia', 'France', 'Spain', 'England', ...]

V10 = ['Netherlands', 'Finland', 'countries', 'Kurdish', ...]

# ...

(c) The most common words assigned to different values of
the Var3 embedding variable.

Figure 7: We examine how the program distinguishes location entities (B-LOC) from organization
entities (B-ORG) by examining the feature weights with the largest gap between the two classes (7a).
Many of the top features are components of the word embeddings, but the model also learns to use the
attention heads to gather information from the context. For example, attention head attn_0_3 copies
one of the embedding variables from the previous position (7b). It promotes the B-LOC label if the
value is Var3.V03, which includes prepositions like “at” and “In” (7c). We represent the embedding
variables as Python Enum objects, which facilitates analysis using a debugger.

Results. The results are in Table 2. We compare the best-performing Transformer Program with a
standard Transformer and with a unigram baseline, which predicts the tag most frequently assigned
to each word in the training data. The Transformer Program achieves reasonable performance, on
par with the standard Transformer. In particular, the Transformer Program surpasses the unigram
baseline, demonstrating that the method learns to make use of contextual information to predict tags.

Interpretability. We illustrate the resulting program by examining how it distinguishes between
two commonly confused classes, location entities (B-LOC) and organizations (B-ORG). To see how
the model makes this distinction in general, we extract the linear classifier weights and identify the
features with the largest difference between the two classes (Figure 7). The highest ranked features
include word-level features (that is, components of the word embeddings); position information; and
features computed by the attention heads. Working backwards through the program, we find that the
model copies information from the neighboring words—for example, increasing the likelihood of
B-LOC if the word is preceded by a preposition like “at” or “In”.

5 Related work
Learning programs. Our work has precedent in a variety of existing work on program induction
and neuro-symbolic methods [e.g. Reed and De Freitas, 2015, Cai et al., 2017, Andreas et al., 2016,
Inala et al., 2020, Cranmer et al., 2020, Kim, 2021]. In particular, a long line of work on Inductive
Logic Programming [Muggleton and De Raedt, 1994, Cropper and Dumančić, 2022] has sought to
learn symbolic logical programs from data, and a number of recent works have used neural networks
to search for discrete logical expressions using differentiable reparameterizations [Payani and Fekri,
2019, Wang et al., 2021, Petersen et al., 2022]. We differ from these methods in targeting programs
for the Transformer and focusing on sequence modeling problems.

Transformers and formal languages. In addition to RASP [Weiss et al., 2021], a body of research
has explored the connection between Transformers and formal languages. Much of this has aimed to

9
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def num_predicate_0_1(q_token, k_token):

if q_token in {"0"}:

return k_token == "0"

elif q_token in {"1"}:

return k_token == "1"

elif q_token in {"2"}:

return k_token == "2"

elif q_token in {"3"}:

return k_token == "3"

elif q_token in {"4"}:

return k_token == "4"

elif q_token in {"5"}:

return k_token == "5"

elif q_token in {"<s>"}:

return k_token == "<pad>"

num_attn_0_1_pattern = select(

tokens, tokens, num_predicate_0_1)

num_attn_0_1_outputs = aggregate_sum(

num_attn_0_1_pattern, ones)

def num_mlp_0_1(num_attn_0_1_output):

key = num_attn_0_1_output

if key in {0, 1}:

return 4

return 0

num_mlp_0_1_outputs = [

num_mlp_0_1(k0)

for k0 in num_attn_0_1_outputs]

Figure 8: An example of a numerical attention head and MLP in a program for the Double Histogram
task. For this task, the model must output, for each position, the number of unique tokens with the
same histogram value. In this example, an attention head (left) calculates the histogram for each
position. An MLP (top right) reads the histogram values and outputs a value of 0 if the histogram
value is greater than one, and 4 otherwise. Inspecting the corresponding classifier weights (bottom

right), we see that an output value of 0—meaning a histogram count greater than 1—increases the
likelihood that the double-histogram value is 1 or 2, and decreases the likelihood of larger values.
Because the input length is limited to 8, this reflects the fact that if one number appears many times,
it is unlikely that another number appears the same number of times. An output of 4 (meaning a
histogram count of 1) increases the likelihood that the double-histogram is greater than 1. Note that
we configure all MLPs to read two input variables, but some MLPs learn to read the same variable
for both inputs, as in this example. This allows us to compress the corresponding function.

variable, the maximum output value is equal to the maximum input length. If an attention head reads
the output of a first-layer attention head as value, the maximum output value is equal to the square of
the maximum input length.

A.3 Extracting programs

In this section, we provide more details about our procedure for converting our trained models into
Python programs. While there are many possible ways to express the discretized model as Python
code, we choose a mapping that facilitates analysis with a standard Python debugger. We use several
simple strategies to improve the readability of the code, by annotating variable types, compressing
statements, and removing unreachable branches. Illustrative programs are depicted in Figures 8 and 9.

Attention. Each attention head is represented by a predicate function, which takes as input a key
and query and outputs a value in {0, 1}. In Transformer Programs, all keys and queries are categorical
variables with cardinality k, so the predicate function can be defined by enumerating the possible
query values, which we do with a series of if statements. Additionally, if multiple query values
are mapped to the same key, we condense the predicate by combining these queries into a single
branch. This is illustrated in Figure 9. In the first attention head (left), each query position attends to
the previous position (with the exception of the first token), so we cannot apply any compression. In
the second attention head (bottom right), fifteen out of the sixteen possible query values are mapped
to a single key value, so we combine them into a single branch.

MLPs. We convert feed-forward modules to functions by enumerating all possible inputs and forming
a key/value lookup-table. For all experiments, we set each MLP to read ` = 2 input variables. In
some cases, the MLP learns to read the same variable for both input variables, allowing us to reduce
the length of the function. We further reduce the length of these functions by identifying the MLP
output value associated with greatest number of keys, and returning this value as the default value
without explicitly evaluating the corresponding condition. These two forms of compression are
illustrated in Figure 8 (top right). This MLP reads a single numerical input variable and outputs a
value of 4 if the input is 0 or 1 and a value of 0 otherwise.

16

Double histogram 

Description: For each token, the 
number of unique tokens with 
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Example: hist2(“abbc”) = 2112 
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# First attention head: copy previous token.

def predicate_0_0(q_position, k_position):

if q_position in {0, 13}:

return k_position == 12

elif q_position in {1}:

return k_position == 0

elif q_position in {2}:

return k_position == 1

elif q_position in {3}:

return k_position == 2

elif q_position in {4}:

return k_position == 3

elif q_position in {5}:

return k_position == 4

elif q_position in {6}:

return k_position == 5

elif q_position in {7}:

return k_position == 6

elif q_position in {8}:

return k_position == 7

elif q_position in {9}:

return k_position == 8

elif q_position in {10}:

return k_position == 9

elif q_position in {11}:

return k_position == 10

elif q_position in {12}:

return k_position == 11

elif q_position in {14}:

return k_position == 13

elif q_position in {15}:

return k_position == 14

attn_0_0_pattern = select_closest(positions, positions,

predicate_0_0)

attn_0_0_outputs = aggregate(attn_0_0_pattern, tokens)

# MLP: reads current token and previous token

# Outputs 13 if it sees "(}" or "{)".

def mlp_0_0(token, attn_0_0_output):

key = (token, attn_0_0_output)

if key in {(")", ")"),

(")", "}"),

("{", ")"),

("}", ")"),

("}", "}")}:

return 4

elif key in {(")", "{"),

("}", "(")}:

return 13

elif key in {("(", ")"),

("(", "}"),

(")", "("),

("{", "}"),

("}", "{")}:

return 0

return 7

mlp_0_0_outputs = [

mlp_0_0(k0, k1) for k0, k1 in

zip(tokens, attn_0_0_outputs)

]

# 2nd layer attention: check for "(}" or "{)"

def predicate_1_2(position, mlp_0_0_output):

if position in {0, 1, 2, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15}:

return mlp_0_0_output == 13

elif position in {3}:

return mlp_0_0_output == 4

attn_1_2_pattern = select_closest(

mlp_0_0_outputs, positions, predicate_1_2)

attn_1_2_outputs = aggregate(

attn_1_2_pattern, mlp_0_0_outputs)

Figure 9: An example of a circuit in a program for Dyck-2. For this task, the inputs consist of strings
from the vocabulary {(, ), {, }}. At each position i, the model must output T if the string up to
position i is a valid string in Dyck-2; P if it is the prefix of a valid string; and F otherwise. A string is
valid if every parenthesis is balanced by a parenthesis of the same type. This circuit recognizes an
invalid pattern, where a left parenthesis (( or {) is immediately followed by a right parenthesis of the
wrong type (} or ), respectively). First, an attention head (left) copies the tokens variable from the
previous position. Second, an MLP (top right) reads the output of this attention head, along with the
tokens variable, and classifies the input into one of four categories—in particular, returning 13 if
it sees the pattern (} or {). In the second layer, another attention head (bottom right) looks for 13,
propagating this information to later positions.

Annotating variable types. In our Transformer model, all categorical variables are encoded using
one-hot embeddings, which are represented as integers in the corresponding program. To improve
readability, we replace these integers with symbolic values where appropriate. At the input layer,
we represent the values of the tokens variable as strings rather than integer indices. At subsequent
layers, we determine the appropriate type by following the computation graph. For example, in
Figure 9, the tokens variable takes on values in {(, ), {, }}; the first attention head reads tokens as
the value variable, so we can automatically determine that attention_0_0_outputs variable takes
on values of the same type; finally, the MLP reads tokens and attention_0_0_outputs as input
variables, so we define the mlp_0_0 function in terms of the token value type.

A.4 Possible extensions

In our experiments, we used a limited set of model components that were designed to ensure that the
resulting programs are interpretable. However, these do not cover all of the primitive components
included in RASP. In this section, we discuss some of these differences; how these limitations can
be addressed by introducing additional modules; and the relationship between (a) introducing more
expressive modules and (b) the complexity of the corresponding program.

One-to-many attention predicates Our Transformer Programs use a form of binary categorical
attention that associates each query value with a single key value. This is enforced by parameterizing
the attention head with a predicate matrix Wpredicate 2 {0, 1}k⇥k (where k is the variable cardinality)
and constraining Wpredicate so that each row contains only a single non-zero entry. This choice results
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